Math 574: Set Theory

Homework 8

Due: Apr 12 and 13

Terminology. For a filter \mathcal{F} on a set X, say that a set $A \subseteq X$ is \mathcal{F} -large (resp. \mathcal{F} -small) if $A \in \mathcal{F}$ (resp. $A \in \mathcal{F}'$, i.e. $A^c \in \mathcal{F}$). For a property P of elements of X (in other words, $P \subseteq X$), say that \mathcal{F} -a.e. $x \in X$ has property P, written

$$\forall^{\mathcal{F}} x \in X \text{ (x has property } P),$$

if the set $\{x \in X : x \text{ has property } P\}$ is \mathcal{F} -large.

1. For a set *A*, let $[A]^2$ denote the collection of all subsets of *A* of size exactly 2; think of these as edges between the elements of *A*. Prove the following using an ultrafilter on \mathbb{N} .

Infinite Ramsey Theorem. For any finite coloring of $[\mathbb{N}]^2$, i.e. a function $c : [\mathbb{N}]^2 \to k := \{0, 1, ..., k-1\}$, there is an infinite monochromatic set $A \subseteq \mathbb{N}$, i.e. $c|_{[A]^2}$ is constant.

REMARK: The usage of an ultrafilter here is an overkill, of course, but a nice one.

HINT: Letting μ be an ultrafilter on \mathbb{N} , derive a coloring c' of \mathbb{N} as follows: for each vertex $v \in \mathbb{N}$, look at the edges incident to v and take the μ -large color. Having colored \mathbb{N} , one of these colors is μ -large. Build a monochromatic subsequence inside this color by induction.

- **2.** Call a set $D \subseteq \mathbb{Z}$ a *difference set* or a Δ -*set* if there is a sequence $(z_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}$ of pairwise distinct elements such that $D := \{z_n z_m : n > m\}$. Denote the collection of all Δ -sets by Δ .
 - (a) Show that Δ -sets have the *Ramsey property*; namely, for any $D \in \Delta$, whenever *D* is partitioned into two sets, at least one of them contains a Δ -set.
 - (b) Conclude that $\Delta^* := \{A \subseteq \mathbb{Z} : \forall D \in \Delta \ (A \cap D \neq \emptyset)\}$ is a filter.
- **3.** Let *X* be a topological space and \mathcal{F} a filter on \mathbb{N} . Call $x \in X$ an \mathcal{F} -limit of a sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$, written

$$\lim_{n \to \mathcal{F}} x_n = x_n$$

if for every open neighborhood *U* of *x*, $x_n \in U$ for \mathcal{F} -a.e. $n \in \mathbb{N}$.

- (a) For which filter \mathcal{F} , the notion of \mathcal{F} -limit coincides with the usual limit?
- (b) Now let μ be an ultrafilter on \mathbb{N} and suppose that X is compact (open covers definition). Prove that every sequence in X has a μ -limit.

Definition. Let (\mathbb{P}, \leq) be a partially ordered set, which we call a *poset*, for short. Say that $p, q \in \mathbb{P}$ are *compatible* if they admit a *common strengthening*, i.e. there is $r \in \mathbb{P}$ with $r \leq p$ and $r \leq q$. Otherwise, say that p and q are *incompatible*, written $p \perp q$.

Definition. For a poset (\mathbb{P}, \leq) , a set $F \subseteq \mathbb{P}$ is called a \mathbb{P} -*filter* if

(i) (Upward closed) $p \in F$ and $q \ge p \implies q \in F$;

(ii) (Contains common strengthenings) $p, q \in F \implies$ there is $r \in F$ with $r \leq p$ and $r \leq q$.

Call a \mathbb{P} -filter *F* an *ultrafilter* (or a *strongly maximal filter*) if for each $p \in \mathbb{P}$ either $p \in F$ or there is $q \in F$ with $p \perp q$.

- **4.** Let *A*, *B* be sets and let \mathbb{P} be the set of all partial functions $A \rightarrow B$ with finite domain. We turn \mathbb{P} into a poset under extension (i.e. reverse inclusion), i.e. for any $p,q \in \mathbb{P}$, $p \leq q : \Leftrightarrow p \supseteq q$. Show that the map $F \mapsto \cup F$ is a bijection between the set of ultrafilters and the set of functions $A \rightarrow B$.
- **5.** Let (\mathbb{P}, \leq) be a countable poset. Identifying $X := \mathscr{P}(\mathbb{P})$ with $2^{\mathbb{P}}$ equips X with the product topology, making it a homeomorphic copy of the Cantor space. Let $X_{\mathbb{P}} \subseteq X$ denote the set of all \mathbb{P} -ultrafilters.
 - (a) Show that $X_{\mathbb{P}}$ is a G_{δ} subset of *X*, i.e. a countable intersection of open sets.

REMARK: X is a Polish space¹ (being compact metrizable) and a subset of a Polish space is itself a Polish space (in the relative topology) if and only if it is G_{δ} (see, for example, Proposition 1.7 in my DST notes). Thus, $X_{\mathbb{P}}$ is also a Polish space.

(b) Prove that the sets

$$U_p := \{ G \in X_{\mathbb{P}} : p \in G \}, \ p \in \mathbb{P},$$

form a basis for the topology on $X_{\mathbb{P}}$.

- (c) Express in terms of the U_p what it means for a set $A \subseteq X_{\mathbb{P}}$ to be
 - (i) open,
 - (ii) dense.

¹A topological space is called *Polish* if it is separable and admits a compatible complete metric (the two most important properties of \mathbb{R}). See Section 1 of my DST notes for a gentle and loving introduction to Polish spaces.