Math 574: Set Theory

Homework 7

Due: Apr 5 and 6

- **1.** ¹Prove:
 - (a) $V_n = L_n$ for each $n \in \omega$; in particular, $V_\omega = L_\omega$.
 - (b) $V_{\omega+1} \neq L_{\omega+1}$, in fact, $|V_{\omega+1}| > |L_{\omega+1}|$. REMARK: This is true even when $\mathbf{V} = \mathbf{L}$.
- 2. Let F(x) be a Δ_0 class-function and $R(y, \vec{z})$ be a Δ_0 class-relation. In class we proved that the relation $R(F(x), \vec{z})$ is Σ_1 in general. However, prove that for the following class-functions F(x), $R(F(x), \vec{z})$ is Δ_0 .
 - (a) $F(x) := \bigcup x$ and $F(x) := \bigcap x$.
 - (b) F(x) := dom(x) if x is a function, and \emptyset , otherwise. Also, same with dom(x) replaced by im(x).
 - (c) (Optional) F(x) is an arbitrary Δ_0 class-function such that the relation $z \in F(x)$ is also Δ_0 and for some $n \in \mathbb{N}$ (a genuine finite number, not an element of V), $\forall x F(x) \subseteq cl_n(x)$, where

$$\operatorname{cl}_n(x) := \underbrace{\bigcup \bigcup \ldots \bigcup x}_{n \text{ times}} x.$$

- **3.** Let F(x) be a Σ_1 class-function and let **M** be a transitive model of a large enough finite fragment of ZF. Suppose that for each x in **M** there is y in **M** such that $(F(x) = y)^{\mathbf{M}}$ holds. Prove:
 - (a) F(x) is absolute for **M**.
 - (b) If $\varphi(y, \vec{z})$ is an absolute formula for **M**, then so is $\exists y ((y = F(x)) \land \varphi(y, \vec{z}))$. REMARK: If you think this is absolutely trivial, you are right.
- 4. Prove that the following class-functions satisfy the hypothesis of Question 3:
 - (a) $F(x, n) := x^n$ if $n \in \omega$, and \emptyset , otherwise.

HINT: $y = x^n$ if and only if there is a certificate $c : \omega \to x$ such that $c(0) = \emptyset$ and for each $k < n \dots$

(b) $F(x) := x^{<\omega}$.

CAUTION: The class-function $F(x) := x^{\omega}$ is very nonabsolute.

Conclude that these class-functions are absolute for transitive models of a large enough finite fragment of ZF.

¹Thanks to Christian Schulz for suggesting this question.