Math 574: Set Theory

Homework 5

Due: Mar 15 and 16

1. Show that in $V_{\omega \cdot 2}$ it is not true that every well-ordering is isomorphic to a ordinal.

HINT: Consider the set $2 \times \omega$. You need to use the fact that $\alpha \notin V_{\alpha}$, which is proven by an easy induction.

AFTERTHOUGHT: Which instance of Replacement fails in $V_{\omega \cdot 2}$?

2. (a) Prove that there is a first-order formula $\varphi(x)$ such that for any ordinal α , if $\varphi(x)$ is absolute for V_{α} then $\alpha = \aleph_{\alpha}$.

HINT: Include in $\varphi(x)$ the axioms from ZF that are needed to guarantee that the classfunction $\beta \mapsto \aleph_{\beta}$ is defined for all ordinals. Next, include the instance of Replacement for this class function. Finally, include a condition on x such that $\varphi(x)$ being absolute for V_{α} ensures that the class-function $\beta \mapsto \aleph_{\beta}$ is absolute for V_{α} .

(b) Prove that there is a first-order formula $\psi(x, y)$ such that if $\psi(x, y)$ is absolute for any transitive nonempty set M, then $M = V_{\lambda}$ for some limit ordinal λ .

HINT: Similar to the previous part, but now you want the absoluteness of $\psi(x, y)$ for M to guarantee that the class-function $\beta \mapsto V_{\beta}$ is defined for all ordinals and is absolute.

3. Prove the following:

General Reflection Principle (ZF⁻). Let U be a model of ZF⁻ and $\alpha \mapsto W_{\alpha}$: Ord \rightarrow U be a class function such that it is

- (i) *increasing:* $\alpha < \beta \implies W_{\alpha} \subseteq W_{\beta}$,
- (ii) continuous: λ limit $\implies W_{\lambda} := \bigcup_{\alpha < \lambda} W_{\beta}$.

Let W denote the class $\bigcup_{\alpha \text{ in Ord}} W_{\alpha}$. For every first-order formula $\varphi(\vec{x})$ without parameters and every ordinal α , there is a limit ordinal $\beta > \alpha$ such that $\varphi(\vec{x})$ and all of its subformulas are absolute between W_{β} and W, i.e.

$$\forall \vec{a} \in W_{\beta}^{|\vec{x}|} \left(\varphi^{W_{\beta}}(\vec{a}) \leftrightarrow \varphi^{W}(\vec{a}) \right)$$

- **4.** Let $\varphi(\vec{x})$ be a first-order formula in the signature (\in), all variables in $\vec{x} := (x_1, x_2, ..., x_n)$ are free.
 - (a) Give the full definition of the translation $\lceil \varphi \rceil$ of φ to a *U*-formula. (We did one clause of this inductive definition in lecture.)
 - (b) Let *A* be a set. For any *U*-formula *f* with $k \in \omega$ variables, let

$$\operatorname{Val}^*(f, A) := \left\{ \vec{a} \in A^k : \exists \delta \in \operatorname{Val}(f, A) \text{ and } \vec{a} = \delta(\operatorname{var}(f)) \right\}.$$

This is just the usual definition of the subset of A^k that a formula with k free variables defines, as opposed to defining a set of functions $\delta : var(f) \rightarrow A$ like we did in class. Prove that

$$\operatorname{Val}^*(\ulcorner \varphi \urcorner, A) = \left\{ \vec{a} \in A^n : \varphi^A(\vec{a}) \right\}.$$

In other words, this says that the first-order formula $\varphi(\vec{x})$ carves out (i.e. defines) the same subset of A^n as the *U*-formula $\lceil \varphi(\vec{x}) \rceil$.

Note: When writing A^n above, we abused the notation and identified our $n \in \mathbb{N}$ with the corresponding ordinal (a point) in U.

5. Prove the following:

U-Löwenheim–Skolem Theorem (ZFC). For any sets $P \subseteq A$ there is a set $P \subseteq B \subseteq A$ with $|B| \leq |P| + \aleph_0$ such that for any *U*-formula $f(\vec{x})$ and any $\vec{b} \in B^{|\vec{x}|}$

$$B \models f(\vec{b}) \iff A \models f(\vec{b}).$$

REMARK: We have not defined everything involved in this question, but making sense of it is part of it.

HINT: The proof is given on page 82 of Rosendal's Note 3, but I suggest trying to prove it first without looking.

6. Listen to "Pyramid Song" by Radiohead and email me (Anush) a sentence describing what you thought of it. You don't have to present this in a problem session.