Math 574: Set Theory

Homework 3

Due: Feb 22 and 23

- **1.** Let κ be an infinite cardinal and let $(A_{\alpha})_{\alpha < \kappa}$ be a sequence of sets, each having cardinality at most κ . Carefully prove that $|\bigcup_{\alpha < \kappa} A_{\alpha}| \leq \kappa$, pinpointing *every* instance of AC you use.
- 2. Let *I* be a set and $(A_i)_{i \in I}$ be a sequence of sets. We denote by $\bigsqcup_{i \in I} A_i$ the disjoint union of A_i , i.e. $\bigsqcup_{i \in I} A_i := \{(i, a) : a \in A_i, i \in I\}$. Follow the steps below to prove König's theorem and its corollary proven in class.

Theorem (König). Let I be a set and $(A_i)_{i \in I}$, $(B_i)_{i \in I}$ be sequences. If $|A_i| < |B_i|$ for all $i \in I$, then $|\bigcup_{i \in I} A_i| < |\prod_{i \in I} B_i|$.

- (a) Bofore proving the theorem, use it to conclude what we proved in class directly: $\kappa^{\operatorname{cof}(\kappa)} > \kappa$.
- (b) Now use AC (more than once) to define an injection $\bigsqcup_{i \in I} A_i \hookrightarrow \prod_{i \in I} B_i$.
- (c) Suppose towards a contradiction that there is a surjection $g: \bigsqcup_{i \in I} A_i \twoheadrightarrow \prod_{i \in I} B_i$ and define $x \in \prod_{i \in I} B_i$ that is not in the image of g by choosing the value x(i) such that it precludes x from being in the g-image of $\{i\} \times A_i$. The main point is that for each $i \in I$, the map $g_i : A_i \to B_i$ defined by $a \mapsto g(i, a)(i)$ is not surjective, so one can choose a value from $B_i \setminus g_i[A_i]$ as x(i).
- **3.** Prove that AF is equivalent to the inexistence of an \in -decreasing ω -sequence¹, i.e. $(x_n)_{n < \omega}$ such that $x_{n+1} \in x_n$ for each $n < \omega$. Note: these x_n need not be pairwise distinct, e.g., it could be that $x_n = x$ for all $n < \omega$.
- **4.** Prove that for each ordinal α , $\alpha \in V_{\alpha+1}$.
- **5.** Prove that if a set *x* is not in *V*, then there is an \in -decreasing ω -sequence starting with *x*.
- **6.** A set *A* is said to be *extensional* if for each $x, y \in A$, $x \cap A = y \cap A$ implies x = y. Provide an example and a counterexample.
- 7. The purpose of this question is to illustrate the counter-intuitiveness of AC.

Prisoners and hats. ω -many prisoners were sentenced to death, but they could get out under the following condition. On the day of the execution they will be lined up, i.e. enumerated $(p_n)_{n \in \mathbb{N}}$, so that each of them can see everyone with higher index (not themselves though). Each prisoner will have a red or blue hat put on him/her without being told which color it is. On command, all the prisoners (at once) make a guess as to what color they think their hat is. If all but finitely many guess correctly, they all go home free; otherwise all of them are executed. The good news is that the prisoners think of a plan the day before the execution, and indeed, all but finitely many guess correctly the next day, so everyone is saved. How do they do it?

HINT: None of the prisoners sees the whole binary sequence, but they all see it up to a certain notion of equivalence. Choose a representative from each equivalence class.

¹For any set *I*, by an *I*-sequence we mean a element of the universe *U* that is a function on *I*.