1. Let κ be an infinite cardinal and let $\left(A_{\alpha}\right)_{\alpha<\kappa}$ be a sequence of sets, each having cardinality at most κ. Carefully prove that $\left|\cup_{\alpha<\kappa} A_{\alpha}\right| \leqslant \kappa$, pinpointing every instance of AC you use.
2. Let I be a set and $\left(A_{i}\right)_{i \in I}$ be a sequence of sets. We denote by $\bigsqcup_{i \in I} A_{i}$ the disjoint union of A_{i}, i.e. $\bigsqcup_{i \in I} A_{i}:=\left\{(i, a): a \in A_{i}, i \in I\right\}$. Follow the steps below to prove König's theorem and its corollary proven in class.
Theorem (König). Let I be a set and $\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}$ be sequences. If $\left|A_{i}\right|<\left|B_{i}\right|$ for all $i \in I$, then $\left|\bigsqcup_{i \in I} A_{i}\right|<\left|\prod_{i \in I} B_{i}\right|$.
(a) Bofore proving the theorem, use it to conclude what we proved in class directly: $\kappa^{\operatorname{cof}(\kappa)}>\kappa$.
(b) Now use AC (more than once) to define an injection $\bigsqcup_{i \in I} A_{i} \hookrightarrow \prod_{i \in I} B_{i}$.
(c) Suppose towards a contradiction that there is a surjection $g: \bigsqcup_{i \in I} A_{i} \rightarrow \prod_{i \in I} B_{i}$ and define $x \in \prod_{i \in I} B_{i}$ that is not in the image of g by choosing the value $x(i)$ such that it precludes x from being in the g-image of $\{i\} \times A_{i}$. The main point is that for each $i \in I$, the map $g_{i}: A_{i} \rightarrow B_{i}$ defined by $a \mapsto g(i, a)(i)$ is not surjective, so one can choose a value from $B_{i} \backslash g_{i}\left[A_{i}\right]$ as $x(i)$.
3. Prove that AF is equivalent to the inexistence of an \in-decreasing ω-sequence ${ }^{1}$, i.e. $\left(x_{n}\right)_{n<\omega}$ such that $x_{n+1} \in x_{n}$ for each $n<\omega$. Note: these x_{n} need not be pairwise distinct, e.g., it could be that $x_{n}=x$ for all $n<\omega$.
4. Prove that for each ordinal $\alpha, \alpha \in V_{\alpha+1}$.
5. Prove that if a set x is not in V, then there is an \in-decreasing ω-sequence starting with x.
6. A set A is said to be extensional if for each $x, y \in A, x \cap A=y \cap A$ implies $x=y$. Provide an example and a counterexample.
7. The purpose of this question is to illustrate the counter-intuitiveness of AC.

Prisoners and hats. ω-many prisoners were sentenced to death, but they could get out under the following condition. On the day of the execution they will be lined up, i.e. enumerated $\left(p_{n}\right)_{n \in \mathbb{N}}$, so that each of them can see everyone with higher index (not themselves though). Each prisoner will have a red or blue hat put on him/her without being told which color it is. On command, all the prisoners (at once) make a guess as to what color they think their hat is. If all but finitely many guess correctly, they all go home free; otherwise all of them are executed. The good news is that the prisoners think of a plan the day before the execution, and indeed, all but finitely many guess correctly the next day, so everyone is saved. How do they do it?
Hint: None of the prisoners sees the whole binary sequence, but they all see it up to a certain notion of equivalence. Choose a representative from each equivalence class.

[^0]
[^0]: ${ }^{1}$ For any set I, by an I-sequence we mean a element of the universe U that is a function on I.

