1. Recall that ordinals α and β are equal if they are isomorphic as orderings. Use this to prove the following facts of ordinal arithmetic, letting α, β, γ denote ordinals.
(a) Associativity. $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$ and $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$.
(b) Identity elements. $\alpha+0=\alpha=0+\alpha$ and $\alpha \cdot 1=\alpha=1 \cdot \alpha$.
(c) Left-distributivity. $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$.
(d) Commutativity on ω. + and • are commutative on ω; in particular, right-distributivity holds as well.
(e) Continuity. If β is a limit ordinal, then $\alpha+\beta=\sup _{\gamma<\beta}(\alpha+\gamma)$ and $\alpha \cdot \beta=\sup _{\gamma<\beta}(\alpha \cdot \gamma)$.
2. Every ordinal is of the form $\lambda+n$, where λ is a limit ordinal or 0 and n is a natural number.
3. Let α be an ordinal and prove the following.
(a) α is infinite $\Longleftrightarrow 1+\alpha=\alpha$.
(b) $\alpha+1$ (where + is ordinal addition) is the successor of α; in particular, $\alpha+1>\alpha$.
(c) α is not a successor $\Longleftrightarrow 2 \cdot \alpha=\alpha$.
(d) $\alpha \neq 0 \Longleftrightarrow \alpha \cdot 2>\alpha$.
(e) α is infinite $\Longleftrightarrow(1+1) \cdot \alpha<\alpha+\alpha$.

Hint: Use Question 2.
4. Letting α denote an ordinal and n a natural number, prove the following facts about ordinal exponentiation.
(a) $\exp (\alpha, n)=\underbrace{\alpha \cdot \alpha \cdot \ldots \cdot \alpha}_{n \text { times }}$. In particular, $\exp (\alpha, n)$ is isomorphic to the reverse lexicographic ordering on the Cartesian product α^{n}.
(b) $\exp (2, \omega)=\omega$. Thus, $\exp (2, \omega+1)=\omega+\omega$.
(c) For a set S, let $S^{<\mathbb{N}}$ denote the set of all finite tuples of elements of S, i.e. $S^{<\mathbb{N}}:=$ $\bigcup_{n \in \mathbb{N}} S^{n}$. Equip $\mathbb{N}^{<\mathbb{N}}$ with an ordering $<$ so that $\left(\mathbb{N}^{<\mathbb{N}},<\right)$ is isomorphic to $\exp (\omega, \omega)$. Hint: This is almost trivial, once you recall that $\exp (\omega, \omega):=\bigcup_{n<\omega} \exp (\omega, n)$.
5. For sets A, B, writing $A \hookrightarrow B$ means that there is an injection of A into B. Prove directly (without using the Cantor-Schröder-Bernstein theorem) that for a cardinal λ and an ordinal κ,

$$
\lambda \hookrightarrow \kappa \Longleftrightarrow \lambda \leqslant \kappa .
$$

Hint: First realize that for any ordinals α, β, if $g: \alpha \hookrightarrow \beta$ is order-preserving, then $\alpha \leqslant \beta$. Now let $f: \lambda \hookrightarrow \kappa$ be an injection, which may not be order-preserving. We replace this with an order-preserving map $f^{\prime}: \lambda^{\prime} \hookrightarrow \kappa$, where λ^{\prime} is some ordinal $\geqslant \lambda$. How do we get such f^{\prime} and λ^{\prime} ? Look at $f[\lambda]$, it is well-ordered and hence is isomorphic to an ordinal λ^{\prime}.
6. Cantor's antidiagonalization. Let X and $R \subseteq X^{2}$ be sets and for $x \in X$, denote by R_{x} the fiber of R over x, i.e.

$$
R_{x}:=\{y \in X:(x, y) \in R\} .
$$

Let ∇_{R} denote the antidiagonal of R, i.e. $\nabla_{R}:=\{x \in X:(x, x) \notin R\}$. Prove that ∇_{R} is not a fiber of R, i.e. there is no $x \in X$ with $\nabla_{R}=R_{x}$.
7. Give an AC-free proof of Hartog's theorem, which states that for every set X there is a cardinal κ such that $\kappa \leftrightarrows$. Conclude the existence of an uncountable cardinal (in ZF, i.e. without AC).

Remark: Most mathematicians assume one has to use AC to get an uncountable cardinal.
Hint: Let A be the set of all ordinals that admit a bijection with a subset of X. Show that A itself is an ordinal and that $A \hookrightarrow X$.

