Math 574: Set Theory

Homework 2

Due: Feb 15 and 16

- 1. Recall that ordinals α and β are equal if they are isomorphic as orderings. Use this to prove the following facts of ordinal arithmetic, letting α , β , γ denote ordinals.
 - (a) Associativity. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ and $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$.
 - (b) *Identity elements.* $\alpha + 0 = \alpha = 0 + \alpha$ and $\alpha \cdot 1 = \alpha = 1 \cdot \alpha$.
 - (c) *Left-distributivity.* $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.
 - (d) *Commutativity on* ω . + and \cdot are commutative on ω ; in particular, right-distributivity holds as well.
 - (e) *Continuity.* If β is a limit ordinal, then $\alpha + \beta = \sup_{\gamma < \beta} (\alpha + \gamma)$ and $\alpha \cdot \beta = \sup_{\gamma < \beta} (\alpha \cdot \gamma)$.
- **2.** Every ordinal is of the form $\lambda + n$, where λ is a limit ordinal or 0 and *n* is a natural number.
- **3.** Let α be an ordinal and prove the following.
 - (a) α is infinite $\iff 1 + \alpha = \alpha$.
 - (b) $\alpha + 1$ (where + is ordinal addition) is the successor of α ; in particular, $\alpha + 1 > \alpha$.
 - (c) α is not a successor $\iff 2 \cdot \alpha = \alpha$.
 - (d) $\alpha \neq 0 \iff \alpha \cdot 2 > \alpha$.
 - (e) α is infinite $\iff (1+1) \cdot \alpha < \alpha + \alpha$.

HINT: Use Question 2.

- 4. Letting α denote an ordinal and n a natural number, prove the following facts about ordinal exponentiation.
 - (a) $\exp(\alpha, n) = \underbrace{\alpha \cdot \alpha \cdot \ldots \cdot \alpha}_{n \text{ times}}$. In particular, $\exp(\alpha, n)$ is isomorphic to the reverse lexico-

graphic ordering on the Cartesian product α^n .

- (b) $\exp(2, \omega) = \omega$. Thus, $\exp(2, \omega + 1) = \omega + \omega$.
- (c) For a set *S*, let $S^{<\mathbb{N}}$ denote the set of all finite tuples of elements of *S*, i.e. $S^{<\mathbb{N}} := \bigcup_{n \in \mathbb{N}} S^n$. Equip $\mathbb{N}^{<\mathbb{N}}$ with an ordering < so that $(\mathbb{N}^{<\mathbb{N}}, <)$ is isomorphic to $\exp(\omega, \omega)$. HINT: This is almost trivial, once you recall that $\exp(\omega, \omega) := \bigcup_{n < \omega} \exp(\omega, n)$.
- **5.** For sets *A*, *B*, writing $A \hookrightarrow B$ means that there is an injection of *A* into *B*. Prove directly (without using the Cantor–Schröder–Bernstein theorem) that for a cardinal λ and an ordinal κ ,

$$\lambda \hookrightarrow \kappa \iff \lambda \leqslant \kappa.$$

HINT: First realize that for any ordinals α, β , if $g : \alpha \hookrightarrow \beta$ is order-preserving, then $\alpha \leq \beta$. Now let $f : \lambda \hookrightarrow \kappa$ be an injection, which may not be order-preserving. We replace this with an order-preserving map $f' : \lambda' \hookrightarrow \kappa$, where λ' is some ordinal $\geq \lambda$. How do we get such f' and λ' ? Look at $f[\lambda]$, it is well-ordered and hence is isomorphic to an ordinal λ' .

6. Cantor's antidiagonalization. Let *X* and $R \subseteq X^2$ be sets and for $x \in X$, denote by R_x the *fiber of R over x*, i.e.

$$R_x := \{ y \in X : (x, y) \in R \}.$$

Let ∇_R denote the *antidiagonal* of R, i.e. $\nabla_R := \{x \in X : (x, x) \notin R\}$. Prove that ∇_R is not a fiber of R, i.e. there is no $x \in X$ with $\nabla_R = R_x$.

7. Give an AC-free proof of Hartog's theorem, which states that for every set X there is a cardinal κ such that $\kappa \not\hookrightarrow X$. Conclude the existence of an uncountable cardinal (in ZF, i.e. without AC).

REMARK: Most mathematicians assume one has to use AC to get an uncountable cardinal.

HINT: Let *A* be the set of all ordinals that admit a bijection with a subset of *X*. Show that *A* itself is an ordinal and that $A \nleftrightarrow X$.