Math 574: Set Theory

Homework 10

Due: Apr 26 and 27

Definition. Say that a poset (\mathbb{P}, \leq)

- is *separative*¹ if for any $p, q \in \mathbb{P}$, $p \leq q \implies \exists r \leq p$ with $r \perp q$.
- has the *countable chain condition*² (c.c.c.) if every antichain is countable.

Below, let *M* be a countable transitive model of ZF and let $(\mathbb{P}, \leq) \in M$ be a poset.

1. Supposing that (\mathbb{P}, \leq) is separative, show that no *M*-generic nonprincipal³ ultrafilter $G \subseteq \mathbb{P}$ is an element of *M*.

HINT: Show that $\mathbb{P} \setminus G$ is dense.

2. For sets *A*, *B* with *B* having at least two elements, observe that the poset $([A \rightarrow B]^{<\omega}, \supseteq)$ is separative and, assuming that *B* is countable, prove that it has the c.c.c.

HINT: For c.c.c., apply the Δ -system lemma to the domains of the functions in a hypothetical uncountable antichain.

Observation (Use freely below). *For any* $a, b \in M$ *and* $p \in \mathbb{P}$ *,*

- (i) $p \Vdash \neg \underline{a} \in \underline{b}$ if and only if $p \Vdash \underline{a} \in \underline{b}$;
- (ii) $p \Vdash \neg \underline{a} \neq \underline{b}$ if and only if $p \Vdash \underline{a} = \underline{b}$.
- **3.** Let $G \subseteq \mathbb{P}$ an *M*-generic ultrafilter. Prove that for any $a, b \in M$,

 $a[G] \neq b[G] \iff \exists p \in G \text{ with } p \Vdash \underline{a} \neq \underline{b}.$

In your proof by induction on the pair-rank ordering \prec , you may assume that for any pair $(a', b') \prec (a, b)$,

 $a'[G] \in b'[G] \iff \exists p \in G \text{ with } p \Vdash \underline{a'} \in \underline{b'}.$

Definition. In a topological space *X*, a set $A \subseteq X$ is said to be

- somewhere⁴ dense if $A \cap U$ is dense in some nonempty open $U \subseteq X$;
- *nowhere dense* if it is not somewhere dense;
- *meager* if it is a countable union of nowhere dense sets;
- comeager if its complement is meager;
- Baire measurable if it "meager away from being open", i.e. A △ U is meager for some open (possibly empty) U ⊆ X;
- G_{δ} (resp. F_{σ}) if it is a countable intersection (resp. union) of open (resp. closed) sets.

Notation. Let *X* be a topological space and $A \subseteq X$.

• Denote the *boundary* A by ∂A , i.e. $\partial A := \overline{A} \setminus \text{Int}(A)$.

¹Recall that this condition was needed in 1(d) of HW9.

²I would name it *countable antichain condition*, of course.

³Call an ultrafilter $G \subseteq \mathbb{P}$ principal if $G = \delta_p := \{q \in \mathbb{P} : q \ge p\}$ for some $p \in \mathbb{P}$.

⁴In general, in a topological space, "somewhere" stands for "in some nonempty open set".

- For an open set U, write $U \Vdash A$ and say that U forces A, if $A \cap U$ is comeager in U, i.e. $U \setminus A$ is meager.
- 4. Let *X* be a topological space.
 - (a) Prove: A set $A \subseteq X$ is nowhere dense $\iff \overline{A}$ is nowhere dense $\iff A^c$ contains an dense open set. In particular, a set is comeager if and only if it contains a countable intersection of dense open sets.
 - (b) Prove: For a closed set $K \subseteq X$, ∂K is nowhere dense. Hence, for an open set U, ∂U is nowhere dense.
 - (c) Conclude: Baire measurable sets are closed under complements.
 - (d) Prove: Baire measurable sets are closed under countable unions.
 - (e) Conclude: Baire measurable sets form a σ -algebra and hence Borel sets are Baire measurable.

Definition. A topological space is said to be *Baire* if every nonempty open set is nonmeager.

5. Prove that a topological space is Baire if and only if every comeager set is dense if and only if every countable intersection of dense open set is dense.

Baire Catogory Theorem⁵. Completely metrizable topological spaces are Baire. In particular, Polish spaces are Baire.

- **6.** Let *X* be a topological space and let \mathcal{V} be a weak basis⁶ for *X*. Prove:
 - (a) **Baire alternative:** For any Baire measurable $A \subseteq X$, either A is meager or there is a nonempty open $U \subseteq X$ with $U \Vdash A$.
 - (b) For sets $A_n \subseteq X$, $n \in \mathbb{N}$, and open $U \subseteq X$,

$$U \Vdash \bigcap_{n} A_{n} \iff \forall n \in \mathbb{N} \ (U \Vdash A_{n}).$$

(c) If *X* is Baire, $A \subseteq X$ is Baire measurable, and $U \subseteq X$ is nonempty open, then

 $U \Vdash A^c \iff \forall V \subseteq U \ (V \nvDash A),$

where *V* varies over \mathcal{V} .

(d) (Optional) If X is Baire, the sets $A_n \subseteq X$, $n \in \mathbb{N}$, are Baire measurable, and U is nonempty open, then

$$U \Vdash \bigcup_{n} A_{n} \iff \forall V \subseteq U \exists W \subseteq V \exists n \in \mathbb{N} \ (W \Vdash A_{n}).$$

where V, W vary over \mathcal{V} .

HINT: Unions are expressed via intersections and complements.

⁵For a proof of this, see, for example, Theorem 6.12 in my DST notes.

⁶Recall that a *weak basis* for a topological space X is a collection \mathcal{V} of nonempty open sets such that every nonempty open set $U \subseteq X$ contains at least one $V \in \mathcal{V}$.