Last update: 10:12pm, Jan 25.

Math 574: Set TheoryHOMEWORK 1Due: Feb 1 and 2

- **1.** (a) Write down an explicit first-order formula $\varphi(x)$ that holds in a model (U, \in) of set theory if and only if x is an ordered pair, i.e. is of the form (x_0, x_1) .
 - (b) Prove that for all $x_0, x_1, y_0, y_1, (x_0, x_1) = (y_0, y_1)$ if and only if $x_0 = y_0$ and $x_1 = y_1$.
 - (c) Let *n* be a fixed natural number (e.g. n = 7). For all $x_1, x_2, ..., x_n$, define/show existence of the set $\{x_1, x_2, ..., x_n\}$.
- **2.** (a) For any sets *A*, *B*, define and prove the existence of the sets $A \setminus B$, $A \cap B$, and $\bigcap A$.
 - (b) For any sets *I*, *X* and a function $a: I \to X$, prove the existence of the sets $\bigcup_{i \in I} a(i)$, $\bigcap_{i \in I} a(i)$, and $\prod_{i \in I} a(i)$.
- **3.** Explain very *precisely* (without hand-waving, tap dancing, or the like) what classes are and how they are different from sets.
- 4. Prove that a class function whose domain is a set is actually a (set) function.
- **5.** For classes *C*, *D*, if *C* is proper and there is a class injection *F* of *C* into *D*, then *D* is proper. In fact, show that the assumption of the injectivity can be relaxed to requiring that *F* is a set-to-one class function, i.e. for every *y* (in *U*), $F^{-1}(y) := \{x : F(x) = y\}$ is a set.
- **6.** (a) Prove that any nonempty subclass *C* of Ord has an \in -least element.
 - (b) Deduce that a transitive set X of ordinals is an ordinal. You may not use the statement that $\bigcup X$ is an ordinal because the proof of the latter uses the former.
- **7.** State and prove the class version of the theorem that every well-ordering is isomorphic to an ordinal. This would be a *theorem-schema*, i.e. one theorem for each class in the hypothesis.
- **8.** State and prove the class version of the definition by induction theorem. Again, this would be a theorem-schema.

REMARK: This can be used to show to build a class injection of Ord into a given class C, thus showing that C is proper (c.f. Question 5).