Math 540: Real Analysis HOMEWORK 9 Due date: Apr 11 (Tue)

- **0.** (Reflection) Write a short (no more than 3/4 of a page) essay discussing the following:
 - the definition of abstract integral and its difference from Riemann integral on \mathbb{R} ;
 - various modes of convergence and their relationship;
 - the magic of Fubini's theorem.

Exercises from Bass's textbook. 15.12

Hint (for 15.12). g vanishes at ∞ in L^q -norm, so we can focus on a set of finite measure and apply Egorov's theorem.

Definition. Let X be a set and $\mathcal{C} \subseteq \mathscr{P}(X)$. Call a function $\varphi : X \to \overline{R}$ (rational) \mathcal{C} -simple if it is a finite (rational) linear combination of characteristic functions of sets from \mathcal{C} .

Definition. Call a σ -algebra \mathcal{M} countably generated if $\mathcal{M} = \sigma(\mathcal{C})$ for some countable $\mathcal{C} \subseteq \mathcal{M}$.

- 1. Prove that, for any measure space and $p \in [1, \infty)$, simple functions are dense in L^p , i.e. for every $f \in L^p$ and $\varepsilon > 0$, there is a simple function φ with $||f \varphi||_{L^p} < \varepsilon$.
- **2.** Let $p \in [1, \infty)$ and let (X, \mathcal{M}, μ) be a σ -finite measure space, where the σ -algebra \mathcal{M} is generated by a collection $\mathcal{C} \subseteq \mathcal{M}$.
 - (a) Let \mathcal{A} be the algebra generated by \mathcal{C} and prove that rational \mathcal{A} -simple functions are dense in L^p .
 - (b) Conclude that if \mathcal{M} is countably generated, then L^p is separable. In particular, $L^p(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda)$ and $\ell^p(\mathbb{N})$ are separable.
 - (c) Prove that if there are infinitely many disjoint sets in \mathcal{M} of positive measure, then L^{∞} is not separable. In particular, $L^{\infty}(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda)$ and $\ell^{\infty}(\mathbb{N})$ are not separable.
- **3.** Let (X, \mathcal{M}, μ) be a measure space and 0 . Prove the following.
 - (a) If \mathcal{M} contains sets of arbitrarily small positive measure, then $L^p \not\subseteq L^q$.
 - (b) If \mathcal{M} contains sets of arbitrarily large finite measure, then $L^p \not\supseteq L^q$.

Hint. For either part, take disjoint sets $(A_n)_n$ of positive finite measure (with an additional smallness or largeness condition) and let $f|_{A_n}$ be an appropriately chosen constant.

Remark. The converses of both parts are also true.

- 4. (About L^{∞}) Let (X, \mathcal{M}, μ) be a measure space and prove the following.
 - (a) Hölder's inequality for $(1, \infty)$: for any measurable functions f, g,

 $||fg||_1 \le ||f||_1 ||g||_{\infty}.$

If $||f||_1, ||g||_{\infty} < \infty$, then $||fg||_1 = ||f||_1 ||g||_{\infty}$ if and only if $|g(x)| = ||g||_{\infty}$ for a.e. $x \in \text{supp}(f) := \{x \in X : f(x) \neq 0\}.$

(b) $\|\cdot\|_{\infty}$ is a norm.

- (c) $f_n \to_{L^{\infty}} f$ (i.e. $||f_n f|| \to 0$) if and only if $f_n \to f$ uniformly on a conull set (i.e. there is a conull set $Y \subseteq X$ such that $f_n|_Y \to_u f|_Y$).
- (d) L^{∞} is a Banach space.
- (e) Simple functions are dense in L^{∞} (in the $\|\cdot\|_{\infty}$ -norm, of course).
- (f) For any $p < \infty$ and $f \in L^p \cap L^\infty$, $||f||_{\infty} = \lim_{q \to \infty} ||f||_q$.