Math 540: Real Analysis

Homework 8

Due date: Mar 21 (Tue)

Exercises from Bass's textbook. 11.8, 11.9, 11.10, 11.15, 11.16

Hint (for 11.8). Measurable sets are approximated by boxes. f is absolutely continuous in L^1 -norm (Problem 2(b) in Homework 7).

Hint (for 11.9). Use Tonelli's theorem to prove the integrability of the function.

Hint (for 11.16). Treat the sum as integral over \mathbb{N} with the counting measure. It is enough to solve the problem with \mathbb{R} replaced by any interval (a, b).

- **1.** Show that the function $f:[0,1]^d \to [0,\infty]$ defined by $f(x) = ||x||_1^{-p}$ is integrable for any real p < d, where $x := (x_1, x_2, \dots, x_d)$ and $||x||_1 := \sum_{i=1}^d |x_i|$.
- **2.** Let (X, \mathcal{M}, μ) be a σ -finite measure space, $f: X \to [0, \infty]$ a non-negative measurable function, and let λ denote the Lebesgue measure on \mathbb{R} .
 - (a) Show that the set $G_f := \{(x,y) \in X \times [0,\infty] : y \leq f(x)\}$ is $\mathcal{M} \otimes \mathcal{B}(\mathbb{R})$ -measurable and prove that the integral of f is equal to the area under its graph, namely:

$$(\mu \times \lambda)(G_f) = \int f \, d\mu$$

Hint. For the measurability of G_f , use Problem 3 of Homework 4.

(b) Derive the so-called Namioka trick:

$$\int f \, d\mu = \int_0^\infty \mu(\{x \in X : y \le f(x)\}) \, d\lambda(y).$$