Math 540: Real Analysis

Homework 6

Due date: Mar 7 (Tue)

Exercises from Bass's textbook. 7.3, 7.5, 7.13

Hint (for 7.13). First compute the same limit but with \int_{δ}^{1} instead of \int_{0}^{1} for any $\delta > 0$.

Notation. Fix a measure space (X, \mathcal{M}, μ) for all problems below. We write L^1 below to mean $L^1(X, \mathcal{M}, \mu)$ and, for a function $f \in L^1$, we put $||f||_1 := \int |f|$. For a sequence $(f_n)_n$ and a function f in L^1 , we write $f_n \to_{L^1} f$ to mean that $(f_n)_n$ converges to f in the L^1 -norm, i.e. $||f - f_n||_1 \to 0$.

- **1.** Prove that for any integrable function $f: X \to \overline{\mathbb{R}} := [-\infty, +\infty]$, the set $\{x \in X : f(x) = \pm \infty\}$ is null and the set $\{x \in X : f(x) \neq 0\}$ is σ -finite.
- **2.** Let $f \in L^1$, $(f_n)_n \subseteq L^1$. Suppose that $f_n \to f$ a.e. and $\int |f_n| \to \int |f|$.
 - (a) Prove that $f_n \to_{L^1} f$.

Hint. Use the generalized Dominated Convergence Theorem (Exercise 7.5 of Bass).

- (b) Conclude that for any measurable $A \subseteq X$, $\int_A f_n \to \int_A f$.
- **3.** Let $(f_n)_n$ be a sequence of nonnegative Lebesgue integrable functions on \mathbb{R} . Prove or give a counterexample to the following statements.

(a)
$$\int \limsup_{n \to \infty} f_n \ge \limsup_{n \to \infty} \int f_n$$

(b) If $f_n \to 0$ both pointwise and in the L^1 -norm, then there is $g \in L^1$ such that $f_n \leq g$ for all $n \in \mathbb{N}$.