Terminology. Let (X, \mathcal{M}, μ) be a measure space and $f : X \to \mathbb{R}$. Below, whenever we use the term continuous for f, we assume that X is also a metric space.

- (i) For a set $A \subseteq X$, let $f|_A$ denote the restriction of f to domain A, and we say that $f|_A$ is \mathcal{M} -measurable if, for every Borel $B \subseteq \mathbb{R}$, $f^{-1}(B) \cap A \in \mathcal{M}$.
- (ii) For a set $A \subseteq X$, say that $f|_A$ is continuous if it is continuous as a function from the metric space A to \mathbb{R} .
- (iii) For $\varepsilon \ge 0$, call a set $A \subseteq X$ co- ε or co- μ - ε if A^c is contained in some set $B \in \mathcal{M}$ with $\mu(B) < \varepsilon$.
- (iv) Call f approximately \mathcal{M} -measurable (resp. approximately continuous) if, for every $\varepsilon > 0$, $f|_A$ is \mathcal{M} -measurable (resp. continuous) for some co- ε set $A \in \mathcal{M}$.

Notation. For a measure space (X, \mathcal{M}, μ) , let $\overline{\mathcal{M}}$ denote the completion of \mathcal{M} with respect to μ . For metric spaces $(X, d_X), (Y, d_Y)$ and a function $f : X \to Y$, denote by DC(f) the set of discontinuity points of f, i.e.

 $DC(f) := \{ x \in X : \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists y \in X \text{ with } d_X(x, y) < \delta \text{ such that } d_Y(f(x), f(y)) \ge \varepsilon \}.$

- 1. Let (X, \mathcal{M}, μ) be a measure space and $f : X \to \mathbb{R}$ a function. Prove that the following are equivalent:
 - (1) $f|_A$ is \mathcal{M} -measurable for some conull set $A \subseteq X$.
 - (2) f is $\overline{\mathcal{M}}$ -measurable.
 - (3) f is approximately \mathcal{M} -measurable.
- 2. Prove that a function $f : \mathbb{R}^d \to \mathbb{R}$ is Lebesgue-measurable if and only if it is approximately continuous (with respect to the Lebesgue measure).
- **3.** Prove that a bounded function $f : [0, 1] \to \mathbb{R}$ is Riemann-integrable if and only if it DC(f) is null (with respect to the Lebesgue measure).
- 4. (Degrees of continuity) Below, everything is with respect to the Lebesgue measure.
 - (a) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that $f|_A$ is continuous for some conull $A \subseteq X$, yet $DC(f) = \mathbb{R}$.
 - (b) For any Cantor set $C \subseteq [0, 1]$ of positive measure, show that $f := \mathbf{1}_C$ is approximately continuous, yet $f|_A$ is discontinuous for every conull set $A \subset \mathbb{R}$.
- 5. This is an alternative approach for proving the linearity of integral on simple functions. Let φ be a simple function on a measure space (X, \mathcal{M}, μ) and let

$$\varphi = \sum_{i < n} a_i \mathbf{1}_{A_i}$$

be an arbitrary representation of φ (the sets A_i may not be pairwise disjoint). Prove that

$$\int \varphi d\mu = \sum_{i < n} a_i \mu(A_i)$$

and conclude that the integral is a linear functional¹ on the space of simple functions.

¹This means
$$\int (c\varphi + \psi)d\mu = c \int \varphi d\mu + \int \psi d\mu$$
, for $c \in \mathbb{R}$ and φ, ψ simple functions on X.