Math 540: Real Analysis

Homework 4

```
Due date: Feb 21 (Tue)
```

- 1. Let λ denote the Lebesgue measure on \mathbb{R}^d and let $A \subseteq \mathbb{R}^d$ denote a Lebesgue measurable set.
 - (a) Prove that λ is translation invariant, i.e. $A \subseteq \mathbb{R}^d$, $\lambda(A) = \lambda(x+A)$ for any $x \in \mathbb{R}^d$.
 - (b) Prove that it respects scaling, i.e. $\lambda(rA) = r^d \lambda(A)$ for any real r > 0.
 - (c) (Optional) For a $d \times d$ matrix M, let P(M) denote the d-dimensional parallelepiped spanned by the columns of M. Prove that if \tilde{I} is a column-addition elementary matrix¹, then $\lambda(P(\tilde{I})) = \lambda(P(I)) = 1$.
 - (d) More generally, let M be a $d \times d$ real-valued matrix and show that $\lambda(MA) = \det(M)\lambda(A)$, where $MA := \{Mx : x \in A\}$.

Hint. Any matrix is a product of elementary matrices.

2. The purpose of this problem is to demonstrate that natural sets that come up in analysis are very often Borel.

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$ be an arbitrary function. A point $x \in X$ is called a *continuity point* of f if f is continuous at x.

(a) For a set $C \subseteq Y$, put diam $(C) := \sup_{x,y \in C} d_Y(x,y)$, and, for $x \in X$, put

 $\operatorname{osc}_f(x) := \inf \left\{ \operatorname{diam}(f(B)) : B \subseteq X \text{ an open ball containing } x \right\}.$

Prove that for every $x \in X$, x is a continuity point of f if and only if $osc_f(x) = 0$.

- (b) Deduce that the continuity points of f form a G_{δ} subset of X.
- **3.** Let (X, \mathcal{M}) be a measurable space. Below, you may use the result stated in class $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, even though we didn't quite finish the proof.
 - (a) $(Y_i, \mathcal{N}_i)_{i \in I}$ a sequence of measurable spaces, let $\pi_i : \prod_{i \in I} Y_i \to Y_i$ denote the projection function onto the *i*th-coordinate for each $i \in I$ and put $\mathcal{N} := \bigotimes_{i \in I} \mathcal{N}_i$. Prove that a function $f : X \to \prod_{i \in I} Y_i$ is $(\mathcal{M}, \mathcal{N})$ -measurable if and only if, for each $i \in I$, the function $\pi_i \circ f : X \to Y_i$ is $(\mathcal{M}, \mathcal{N}_i)$ -measurable.
 - (b) Conclude that a function $f : X \to \mathbb{C}$ is \mathcal{M} -measurable if and only if both $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are \mathcal{M} -measurable.
 - (c) For each i = 0, 1, let (Y_i, \mathcal{N}_i) be a measurable space and $f_i : X \to Y_i$ an $(\mathcal{M}, \mathcal{N}_i)$ measurable function. Let (Z, \mathcal{S}) be a measurable space and let $g : Y_0 \times Y_1 \to Z$ be
 an $(\mathcal{N}_0 \otimes \mathcal{N}_1, \mathcal{S})$ -measurable function. Prove that the composition $g(f_0, f_1) : X \to Z$ is $(\mathcal{M}, \mathcal{S})$ -measurable.
 - (d) Conclude that for any \mathcal{M} -measurable $f, g : X \to \mathbb{R}$, the functions f + g and $f \cdot g$ are also \mathcal{M} -measurable.

 $^{^{1}}Column$ -addition matrices are those obtained from the identity matrix by adding a scalar multiple of one column to another.