Math 540: Real Analysis HOMEWORK 3 Due date: Feb 7 (Tue)

- **0.** (Reflection) Write a short (no more than 3/4 of a page) essay discussing the following:
 - your understanding of the problem of constructing a measure that extends a given function on a collection of sets (e.g. the volume-function on boxes in \mathbb{R}^3); give an example of a function that is not extendable;
 - how you would try constructing an extension if you were asked a week ago;
 - how we did it: list the main steps of our construction, providing a one-sentence motivation/explanation for each.

Notation. Let P(n) be a property of a natural number $n \in \mathbb{N}$. Define

 $\exists^{\infty} n P(n) :\Leftrightarrow \text{ for arbitrarily large } n \ P(n) \text{ holds } :\Leftrightarrow \forall m \ \exists n \ge m \ P(n)$ $\forall^{\infty} n P(n) :\Leftrightarrow \text{ for all large enough } n \ P(n) \text{ holds } :\Leftrightarrow \exists m \forall n \ge m \ P(n).$

- 1. Let μ^* be a finite outer measure on X (i.e. $\mu^*(X) < \infty$) and let d_{μ^*} be the pseudo-metric on $\mathscr{P}(X)$ as defined in class, i.e. $d_{\mu^*}(A, B) := \mu^*(A \triangle B)$. Prove that the union function $\cup : \mathscr{P}(X) \times \mathscr{P}(X) \to \mathscr{P}(X)$ given by $(A, B) \mapsto A \cup B$ is jointly continuous, i.e. for any sequences $(A_n)_n$ and $(B_n)_n$ converging to A and B, respectively, the sequence $(A_n \cup B_n)_n$ converges to $A \cup B$.
- **2.** Let $(X_n)_{n \in \mathbb{N}}$ be a partition of a set X and let \mathcal{M}_n be a σ -algebra on X_n , for each $n \in \mathbb{N}$.
 - (a) Letting \mathcal{M} denote the σ -algebra on X generated by $\bigcup_{n \in \mathbb{N}} \mathcal{M}_n$, prove that \mathcal{M} is exactly the collection of all subsets of X of the form $\bigsqcup_{n \in \mathbb{N}} A_n$, where $A_n \in \mathcal{M}_n$ for each $n \in \mathbb{N}$.
 - (b) Now let μ_n be a measure on \mathcal{M}_n , for each $n \in \mathbb{N}$. Define a measure μ on \mathcal{M} that extends every μ_n (i.e. $\mu|_{\mathcal{M}_n} = \mu_n$) and prove your answer. Also show that such a measure is unique.
- 3. (Correct proof of countable additivity of the extension) Let ρ be a finite premeasure on an algebra \mathcal{A} (on a set X) and let \mathcal{M} be the closure of \mathcal{A} in the pseudo-metric $d := d_{\mu_{\rho}^*}$. The proof I gave in class of countable additivity of μ_{ρ}^* on \mathcal{M} is incorrect: the errors coming from disjointification of the sets A_n add up to ∞ . Fill in the details in the following correct proof.

Proof. By continuity, μ_{ρ}^* is finitely additive on \mathcal{M} because it is finitely additive on \mathcal{A} and \mathcal{A} is dense in \mathcal{M} . But μ_{ρ}^* is also countably subadditive, which amplifies finite additivity to countable additivity.

4. (Borel-Cantelli Lemma) Let (X, \mathcal{M}, μ) be a measure space and let $\{B_n\}_{n \in \mathbb{N}} \subseteq \mathcal{M}$ be such that $\sum_{n \in \mathbb{N}} \mu(B_n) < \infty$. Prove that the set

$$B := \limsup_{n \in \mathbb{N}} B_n := \{ x \in X : \exists^{\infty} n \, x \in B_n \}.$$

Prove that $B \in \mathcal{M}$ and $\mu(B) = 0$.

Remark. This lemma, although easy, is extremely useful.¹ Say you have bad sets B_n that you'd like each point $x \in X$ to eventually avoid (i.e. $\forall^{\infty} n \ (x \notin B_n)$). If your bad sets have summable measure (an indication of smallness), then good news: only a μ -null set of points in X are so unfortunate as to hit infinitely many of these bad sets.

5. Let ρ be a finite premeasure on an algebra \mathcal{A} on a set X and let \mathcal{M} be the closure of \mathcal{A} in the pseudo-metric $d := d_{\mu_{\rho}^*}$. Prove that for every $B \in \mathcal{M}$, there is $A \in \sigma(\mathcal{A})$ with d(A, B) = 0. Conclude that (X, \mathcal{M}, μ) is the completion of $(X, \sigma(\mathcal{A}), \mu)$.

Hint. Borel-Cantelli.

6. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $\mathcal{C} \subseteq \mathcal{M}$ be a collection that generates \mathcal{M} (as a σ -algebra), i.e. $\sigma(\mathcal{C}) = \mathcal{M}$. Show that the algebra \mathcal{A} generated by \mathcal{C} is dense in \mathcal{M} with respect to the pseudo-metric d_{μ} on \mathcal{M} defined by $d_{\mu}(A, B) = \mu(A \bigtriangleup B)$. Conclude that if \mathcal{M} is *countably generated* (i.e. admits a countable generating $\mathcal{C} \subseteq \mathcal{M}$), then the pseudo-metric space (\mathcal{M}, d_{μ}) is separable².

 $^{^1\}mathrm{I}$ often call it the "fundamental theorem of measure theory".

 $^{^{2}}$ A metric/topological space is called *separable* if it admits a countable dense subset.