Math 540: Real Analysis He

Homework 2

Due date: Jan 31 (Tue)

1. Prove that there doesn't exist a probability measure μ on $\mathcal{B}(\mathbb{R})$ that is invariant under the translation action of \mathbb{Z} on \mathbb{R} , i.e. for every $A \in \mathcal{B}(\mathbb{R})$ and $\gamma \in \mathbb{Z}$, $\mu(\gamma + A) = \mu(A)$.

For future reference, here are the definitions of group action and invariant measure.

Definition (Group action). Let $(\Gamma, \cdot_{\Gamma}, 1_{\Gamma})$ be a group and X a set. An action $\alpha : \Gamma \curvearrowright X$ is a map $\alpha : \Gamma \times X \to X$ satisfying the following properties, where we use the notation $\gamma \cdot_{\alpha} x$ instead of $\alpha(\gamma, x)$, for $\gamma \in \Gamma, x \in X$:

- (i) Identity: $1_{\Gamma} \cdot_{\alpha} x = x$ for all $x \in X$.
- (ii) Associativity: $\gamma_1 \cdot_{\Gamma} (\gamma_2 \cdot_{\alpha} x) = (\gamma_1 \cdot_{\Gamma} \gamma_2) \cdot_{\alpha} x$, for all $x \in X$ and $\gamma_1, \gamma_2 \in \Gamma$.

Definition (Invariant measure). Let $\alpha : \Gamma \curvearrowright X$ be a group action. Call a collection $\mathcal{M} \subseteq \mathscr{P}(X) \alpha$ -invariant if $\gamma \cdot_{\alpha} A \in \mathcal{M}$ for every $\gamma \in \Gamma$ and $A \in \mathcal{M}$. For a measure space (X, \mathcal{M}, μ) , call the measure $\mu \alpha$ -invariant if \mathcal{M} is α -invariant and $\mu(\gamma \cdot_{\alpha} A) = \mu(A)$ for all $\gamma \in \Gamma$ and $A \in \mathcal{M}$.

- 2. (Completion of measure) Let (X, \mathcal{M}, μ) be a measure space. Let $\overline{\mathcal{M}}$ denote the collection of the sets of the form $A \cup Z$, where $A \in \mathcal{M}$ and Z is a μ -null set. Prove the following.
 - (a) \mathcal{M} is a σ -algebra.
 - (b) The map $\overline{\mu} : \overline{\mathcal{M}} \to [0, \infty]$ given by $\overline{\mu}(A \cup Z) = \mu(A)$ is well-defined, i.e. independent of the presentation $A \cup Z$.
 - (c) $\overline{\mu}$ is a measure, making $(X, \overline{\mathcal{M}}, \overline{\mu})$ a complete measure space, so we call $\overline{\mu}$ the completion of μ .
- 3. (Measuring boxes) Let \mathcal{C} be the collection of all boxes in \mathbb{R}^d and let \mathcal{A} be the algebra of finite unions of boxes in \mathbb{R}^d . Define $\rho : \mathcal{C} \to [0, \infty]$ by

$$\rho(I_1 \times I_2 \times \ldots \times I_d) := |I_1| \cdot |I_2| \cdot \ldots \cdot |I_d|.$$

Call a collection $\mathcal{G} \subseteq \mathscr{P}(\mathbb{R}^d)$ a grid if $\mathcal{G} = \mathcal{I}_1 \times \ldots \times \mathcal{I}_d$, where each \mathcal{I}_i is a finite collection of pairwise disjoint intervals. In particular, \mathcal{G} is a finite collection of pairwise disjoint boxes.

(a) Prove that if a box B is partitioned¹ into a grid \mathcal{G} , then

$$\rho(B) = \sum_{C \in \mathcal{G}} \rho(C).$$

- (b) Prove that every finite partition¹ \mathcal{P} of a box B into other boxes can be *refined* to a grid, i.e. there is a grid \mathcal{G} that partitions B and is such that every $C \in \mathcal{G}$ is contained in some $C' \in \mathcal{P}$.
- (c) Conclude that if $A \in \mathcal{A}$ admits two finite partitions $\mathcal{P}_0, \mathcal{P}_1$ into boxes, then

$$\sum_{B \in \mathcal{P}_0} \rho(B) = \sum_{C \in \mathcal{P}_1} \rho(C).$$

Thus, there is a unique finitely additive measure $\bar{\rho} : \mathcal{A} \to [0, \infty]$ that extends ρ .

ł

¹A partition \mathcal{P} of a set A is a collections of pairwise disjoint sets that union up to A.

- 4. (Coin-flip premeasure) Recalling the Cantor space $2^{\mathbb{N}}$ from the previous homework, let $\mathcal{C} \subseteq \mathscr{P}(2^{\mathbb{N}})$ be the collection of all sets of the form V_s (call these sets *cylinders*) and let \mathcal{A} be the algebra of finite unions of cylinders. Define a $\rho : \mathcal{C} \to [0, 1]$ by $\rho(V_s) := 2^{-|s|}$ for each $s \in 2^{<\mathbb{N}}$.
 - (a) Prove that ρ admits a unique extension to a finitely additive probability measure $\bar{\rho}: \mathcal{A} \to [0, 1]$. This is called the *fair coin-flip measure*.

Hint. Proceed as in Problem 3, defining the analogous notion of a *grid* as a collection of the form $\{V_t : t \in 2^n, t \supseteq s\}$ for some $s \in 2^m$ with $0 \leq m \leq n$.

(b) Prove that $\bar{\rho}$ is actually a premeasure on \mathcal{A} , i.e. that it is countably-additive.

Hint. The sets V_s are compact, so you only have to recall the following definition of compactness (which, in metric spaces, is equivalent to the one with sequences): every open cover has a finite subcover.

5. Let ρ be a premeasure on an algebra \mathcal{A} on a set X and let $\mu^* : \mathscr{P}(X) \to [0, \infty]$ be the induced premeasure as defined in class (or in Theorem 4.17 of Bass's textbook). Prove that for every $A \in \mathcal{A}$ and every $B \subseteq X$, $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$. You may use the fact that μ^* coincides with ρ on \mathcal{A} .