Math 540: Real Analysis

Homework 12

Optional, won't be graded

Notation and terminology. Below let H denote a Hilbert space.

For any closed linear subspace $M \subseteq H$ and any vector $x \in M$, we have proven in class that there is a unique vector $y \in M$ such that $x - y \in M^{\perp}$. Call this vector y the projection of x on M and denote it by $\operatorname{proj}_M(x)$. Recall that $\operatorname{proj}_M(x)$ is also the closest element of Mto x, i.e. $||x - y|| = \inf_{y' \in M} ||x - y'||$. Call x - y the coprojection of x on M and denote it by $\operatorname{proj}_M^{\perp}(x)$. Observe that $\operatorname{proj}_M^{\perp}(x) = \operatorname{proj}_{M^{\perp}}(x)$.

Problems.

1. Let $\{u_i\}_{i\in I} \subseteq H$ be an orthonormal family and let $M := \overline{\text{Span}\{u_i : i\in I\}}$. Prove that the set $I_x := \{i \in I : \langle x, u_i \rangle \neq 0\}$ is countable and, for any enumeration $I_x = \{i_n\}_{n\in\mathbb{N}}$,

$$\sum_{k < n} \langle x, u_{i_k} \rangle \, u_{i_k} \to \operatorname{proj}_M(x) \text{ as } n \to \infty.$$

In other words,

$$\operatorname{proj}_{M}(x) = \sum_{i \in I} \langle x, u_i \rangle \, u_i.$$

Conclude that $\|\operatorname{proj}_M(x)\|^2 = \sum_{i \in I} |\langle x, u_i \rangle|^2$.

- **2.** Let *H* be a Hilbert space and let $\{u_i\}_{i \in I} \subseteq H$ be an orthonormal family of vectors. Prove that the following are equivalent:
 - (1) $\{u_i\}_{i \in I}$ is an orthonormal basis of H, i.e. $\overline{\text{Span}\{u_i : i \in I\}} = H$.
 - (2) Every $x \in H$ is equal to $\sum_{i \in I} \langle x, u_i \rangle u_i$ (in the sense of Problem 1).
 - (3) For every $x \in H$, $||x||^2 = \sum_{i \in I} |\langle x, u_i \rangle|^2$.
 - (4) $\{u_i\}_{i\in I}$ is a maximal orthonormal family, i.e. if an $x \in H$ is orthogonal to all u_i then x = 0.
- **3.** Prove that a Hilbert space is separable if and only if it admits a countable orthonormal basis.
- 4. Prove that any two orthonormal bases of a Hilbert space H have the same cardinality. Hint. Use (2) of Problem 2 together with the fact that $|\mathbb{N} \times I| = |I|$ for any infinite set I.
- 5. Let H be a Hilbert space and let $\{u_i\}_{i \in I} \subseteq H$ be an orthonormal basis of H. Show that the map $H \to \ell^2(I)$ defined by $x \mapsto \hat{x} := (\langle x, u_i \rangle)_{i \in I}$ is unitary. In particular, any separable Hilbert space is isomorphic to $\ell^2(\mathbb{N})$.
- 6. Prove the stronger version of the Lebesgue differentiation theorem (Corollary 10 in the "Lebesgue differentiation" lecture notes.)

Definition. Call a function $f : \mathbb{R} \to \mathbb{R}$ absolutely continuous (in the uniform norm), if for every $\varepsilon > 0$ there is $\delta > 0$ such that for any finite set $\{(a_i, b_i)\}_{i \le n}$ of disjoint intervals,

$$\sum_{i < n} (b_i - a_i) < \delta \implies \sum_{\substack{i < n \\ 1}} |f(b_i) - f(a_i)| < \varepsilon$$

7. Let $f \in L^1_{loc}(\mathbb{R})$ and $a \in \mathbb{R}$. Define an *antiderivative* $F : \mathbb{R} \to \mathbb{R}$ of f by

$$F(x) := \int_{a}^{x} f(t) d\lambda(t).$$

- (a) Prove that F is absolutely continuous (in the uniform norm).
- (b) Prove that F is differentiable almost everywhere and F' = f a.e.

Definition. Let *E* be an equivalence relation on a set *X*. Call a set $A \subseteq X$ *E-invariant* if *A* is a union of *E*-classes, equivalently, for every $x \in X$, $x \in A \Rightarrow [x]_E \subseteq A$. Letting *Y* be a set, call a function $f: X \to Y$ *E-invariant* if *f*-preimage of every point is *E*-invariant, equivalently, for any $x_0, x_1 \in X, x_0 E x_1 \Rightarrow f(x_0) = f(x_1)$.

Definition. Call an equivalence relation E on a measure space (X, \mathcal{M}, μ) ergodic¹ (or μ -ergodic) if every E-invariant measurable set is either μ -null or μ -conull.

- 8. Let *E* be an ergodic equivalence relation on a measure space (X, \mathcal{M}, μ) . Prove that any measurable *E*-invariant function $f: X \to \mathbb{R}$ is constant a.e.
- **9.** Recall the Vitali equivalence relation E_V on \mathbb{R} : $x E_V y :\Leftrightarrow x y \in \mathbb{Q}$. Prove that it is ergodic with respect to the Lebesgue measure. In particular, any measurable E_V -invariant function is constant a.e., which gives another proof that choosing a point from each E_V -class results in a nonmeasurable set.

Hint. Use the 99% lemma.

10. Read the definition of the *Cantor–Lebesgue function* on Christopher Hail's note on Cantor–Lebesgue function [link to pdf, also posted on our course webpage] and do Exercise 1.57 of the same note.

¹Think of *ergodic* as *atomic* in the eyes of the measure.