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Math 540: Real Analysis Homework 12 Optional, won’t be graded

Notation and terminology. Below let H denote a Hilbert space.
For any closed linear subspace M ⊆ H and any vector x ∈ M , we have proven in class

that there is a unique vector y ∈M such that x− y ∈M⊥. Call this vector y the projection
of x on M and denote it by projM (x). Recall that projM (x) is also the closest element of M
to x, i.e. ‖x− y‖ = infy′∈M ‖x− y′‖. Call x− y the coprojection of x on M and denote it by
proj⊥M(x). Observe that proj⊥M(x) = projM⊥(x).

Problems.

1. Let {ui}i∈I ⊆ H be an orthonormal family and let M ..= Span {ui : i ∈ I}. Prove that
the set Ix ..= {i ∈ I : 〈x, ui〉 6= 0} is countable and, for any enumeration Ix = {in}n∈N,∑

k<n

〈x, uik〉uik → projM(x) as n→∞.

In other words,

projM(x) =
∑
i∈I

〈x, ui〉ui.

Conclude that ‖ projM(x)‖2 =
∑

i∈I | 〈x, ui〉 |2.

2. Let H be a Hilbert space and let {ui}i∈I ⊆ H be an orthonormal family of vectors. Prove
that the following are equivalent:

(1) {ui}i∈I is an orthonormal basis of H, i.e. Span {ui : i ∈ I} = H.

(2) Every x ∈ H is equal to
∑

i∈I 〈x, ui〉ui (in the sense of Problem 1).

(3) For every x ∈ H, ‖x‖2 =
∑

i∈I | 〈x, ui〉 |2.
(4) {ui}i∈I is a maximal orthonormal family, i.e. if an x ∈ H is orthogonal to all ui then

x = 0.

3. Prove that a Hilbert space is separable if and only if it admits a countable orthonormal
basis.

4. Prove that any two orthonormal bases of a Hilbert space H have the same cardinality.

Hint. Use (2) of Problem 2 together with the fact that |N× I| = |I| for any infinite set I.

5. Let H be a Hilbert space and let {ui}i∈I ⊆ H be an orthonormal basis of H. Show

that the map H → `2(I) defined by x 7→ x̂ ..=
(
〈x, ui〉

)
i∈I is unitary. In particular, any

separable Hilbert space is isomorphic to `2(N).

6. Prove the stronger version of the Lebesgue differentiation theorem (Corollary 10 in the
“Lebesgue differentiation” lecture notes.)

Definition. Call a function f : R→ R absolutely continuous (in the uniform norm), if for
every ε > 0 there is δ > 0 such that for any finite set {(ai, bi)}i<n of disjoint intervals,∑

i<n

(bi − ai) < δ =⇒
∑
i<n

|f(bi)− f(ai)| < ε.
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7. Let f ∈ L1
loc(R) and a ∈ R. Define an antiderivative F : R→ R of f by

F (x) ..=

∫ x

a

f(t)dλ(t).

(a) Prove that F is absolutely continuous (in the uniform norm).

(b) Prove that F is differentiable almost everywhere and F ′ = f a.e.

Definition. Let E be an equivalence relation on a set X. Call a set A ⊆ X E-invariant
if A is a union of E-classes, equivalently, for every x ∈ X, x ∈ A ⇒ [x]E ⊆ A. Letting Y
be a set, call a function f : X → Y E-invariant if f -preimage of every point is E-invariant,
equivalently, for any x0, x1 ∈ X, x0E x1 ⇒ f(x0) = f(x1).

Definition. Call an equivalence relation E on a measure space (X,M, µ) ergodic1 (or
µ-ergodic) if every E-invariant measurable set is either µ-null or µ-conull.

8. Let E be an ergodic equivalence relation on a measure space (X,M, µ). Prove that any
measurable E-invariant function f : X → R is constant a.e.

9. Recall the Vitali equivalence relation EV on R: xEV y ..⇔ x − y ∈ Q. Prove that it is
ergodic with respect to the Lebesgue measure. In particular, any measurable EV -invariant
function is constant a.e., which gives another proof that choosing a point from each
EV -class results in a nonmeasurable set.

Hint. Use the 99% lemma.

10. Read the definition of the Cantor–Lebesgue function on Christopher Hail’s note on Cantor–
Lebesgue function [link to pdf, also posted on our course webpage] and do Exercise 1.57
of the same note.

1Think of ergodic as atomic in the eyes of the measure.
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http://www.math.gatech.edu/~heil/6337/spring11/section1.9.pdf
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