Math 540: Real Analysis

Homework 1

- **1.** (a) Prove that if $f:[0,1] \to \mathbb{R}$ is a bounded Riemann-integrable function and $g: \mathbb{R} \to \mathbb{R}$ is continuous, then $g \circ f$ is Riemann-integrable.
 - (b) Recall that a set $A \subseteq [0,1]$ is called *Riemann-measurable* if its indicator function $\mathbf{1}_A$ is Riemann-integrable. Using (a) and the fact that Riemann-integrable functions are closed under addition, prove that the Riemann-measurable subsets of [0,1] form an algebra on [0,1].

Hint. $\min(x, y) = \frac{x+y}{2} - \frac{|x-y|}{2}$.

2. (Introducing Cantor space) Let $2^{\mathbb{N}}$ denote the set of all infinite binary sequences and let $2^{<\mathbb{N}}$ denote the set of all finite binary sequences (including the empty sequence \emptyset). For $s \in 2^{<\mathbb{N}}$, let |s| denote its length. For example, $1101 \in 2^{<\mathbb{N}}$ and |1101| = 4. For $x \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, let $x|_n$ denote the finite initial segment of x of length n. For $s \in 2^{<\mathbb{N}}$, say that x extends s, and write $x \supseteq s$, if $x|_{|s|} = s$. For each $s \in 2^{<\mathbb{N}}$, define

$$V_s := \left\{ x \in 2^{\mathbb{N}} : x \supseteq s \right\}.$$

Thinking of $2^{<\mathbb{N}}$ as the binary tree and $2^{\mathbb{N}}$ as the set of infinite branches through it, V_s is the set of all infinite branches of the subtree lying under¹ s.

- (a) Prove that the finite unions of the sets V_s form an algebra on $2^{\mathbb{N}}$.
- (b) Define $d: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \to [0, \infty)$ by $(x, y) \mapsto 2^{-\Delta(x, y)}$, where $\Delta(x, y)$ is the largest *n* such that $x|_n = y|_n$. Show that *d* is a metric on $2^{\mathbb{N}}$, whose open balls are exactly the sets V_s . The metric space $(2^{\mathbb{N}}, d)$ is called the *Cantor space* and denoted by \mathcal{C} .
- (c) Conclude that the sets V_s are clopen.
- (d) Prove that $2^{\mathbb{N}}$ is compact.

Hint. Recall/learn the proof of König's lemma², which is the same as the divideand-choose proof of the Bolzano-Weierstrass theorem.

3. Let X be a metric space. Recall that a set $A \subseteq X$ is called *Baire-measurable* if $A = U \bigtriangleup M$, where U is open, M is meager (i.e. is a countable union of nowhere dense sets), and \bigtriangleup denotes the symmetric difference. Prove that Baire-measurable sets form a σ -algebra.

 ${\it Hint.}$ Showing closure under complements boils down to closed sets being Baire-measurable.

- 4. (a) Let $(X, \mathcal{A}), (Y, \mathcal{B})$ be measurable spaces and let \mathcal{C} be a generating collection for \mathcal{B} , i.e. $\sigma(\mathcal{C}) = \mathcal{B}$. Prove that, for any function $f : X \to Y$, if $f^{-1}(C) \in \mathcal{A}$ for all $C \in \mathcal{C}$, then f is measurable, i.e. $f^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$.
 - (b) Conclude that for metric spaces X, Y, a function $f : X \to Y$ is Borel if and only if f-preimages of open sets are Borel. In particular, continuous functions are Borel.

¹My trees grow downward; if yours grow upward, replace "under" with "above".

²König's Lemma: Every finitely branching infinite tree has an infinite branch.