MATH 570: MATHEMATICAL LOGIC

POTENTIAL FINAL EXAM PROBLEMS

1. Let $(L,<)$ be a linearly ordered set and let $\left(A_{\ell}\right)_{\ell \in L}$ be an increasing elementary chain of σ-structures, i.e. $A_{\ell} \leq A_{k}$ for $\ell \leq k$. Show that $A=\bigcup_{\ell \in L} A_{\ell}$ is a universe of a σ-structure A and that $\boldsymbol{A}_{\ell} \leq \boldsymbol{A}$ for each $\ell \in L$.
2. Let \boldsymbol{M} be a σ-structure.

Definition. \boldsymbol{M} is said to be weakly homogeneous if for every pair $\boldsymbol{A} \subseteq \boldsymbol{B}$ of finitely generated substructures of \boldsymbol{M}, every embedding (not necessarily elementary) $h: A \hookrightarrow$ \boldsymbol{M} extends to an embedding $\bar{h}: \boldsymbol{B} \hookrightarrow \boldsymbol{M}$.

Definition. For a subset $A \subseteq \boldsymbol{M}$ and a σ-structure \boldsymbol{K}, a function $h: A \rightarrow \boldsymbol{K}$ is called a partial elementary map $\boldsymbol{M} \rightharpoonup_{e} \boldsymbol{K}$ if for every σ-formula $\varphi(\vec{x})$ and $\vec{a} \in A^{|\vec{x}|}$,

$$
\boldsymbol{M} \vDash \varphi(\vec{a}) \text { if and only if } \boldsymbol{K} \models \varphi(h(\vec{a})) \text {. }
$$

Definition. For an infinite cardinal κ, M is said to be $\mathcal{\kappa}$-homogenenous if for every $A \subseteq M$ with $|A|<\mathcal{K}$ and $a \in M$, every partial elementary map $h: A \rightarrow M$ extends to a partial elementary map $\bar{h}: A \cup\{a\} \rightarrow M$.

Prove that if \boldsymbol{M} is weakly homogeneous, then for every finitely generated substructure $\boldsymbol{A} \subseteq \boldsymbol{M}$, any embedding $\boldsymbol{A} \hookrightarrow \boldsymbol{M}$ is a partial elementary map $\boldsymbol{M} \rightharpoonup \boldsymbol{M}$. Deduce that weak homogeneity implies \aleph_{0}-homogeneity.
3. Give an example of a structure A (in some signature) and a definable binary relation Q in it such that the unary relation

$$
P(y): \Leftrightarrow \exists^{\infty} x Q(x, y)
$$

is not definable in A, where " $\exists^{\infty} x$ " means "for infinitely many x ". Provide a proof of every statement you use that claims nondefinability of a set.
4. Let $\sigma:=(E)$ be the signature of graphs, i.e. E is a binary relation symbol.
(a) Write down an explicit axiomatization T for the class of undirected graphs with no loops, whose connected components are bi-infinite chains, i.e. acyclic graphs with the degree of each vertex being 2 .
(b) Show that T is complete.
(c) Conclude yet again (for the last time, I promise) that the binary relation R of being in the same connected component is not 0 -definable in any disconnected model of T.

Hint: Let $\varphi_{R}(x, y)$ be a formula defining R in a disconnected model M, so $\boldsymbol{M} \vDash \exists x \exists y \neg \varphi_{R}(x, y)$, hence $\boldsymbol{Z} \vDash \exists x \exists y \neg \varphi_{R}(x, y)$, where \boldsymbol{Z} is the connected model. Elements $a, b \in Z$ that witness the latter sentence are within finite distance from each other...
(d) Show that for any $\boldsymbol{M} \vDash T$ and $a, b \in M$, there is an automorphism g of \boldsymbol{M} with $g(a)=b$.
(e) For $\boldsymbol{M} \vDash T$, exactly which subsets of M are 0 -definable in \boldsymbol{M} ?
(f) Finally, prove that T is model-complete, but does not admit q.e. Recall that that $\mathbb{F} \mathbb{O L}(\sigma)$ includes the 0 -ary relation symbols for truth and falsehood, so σ not having a constant symbol is not the reason why T doesn't admit q.e.
5. Consider the following function:

$$
f(n)= \begin{cases}1 & \text { if the decimal expression of } \pi \text { contains } n \text { consecutive zeroes } \\ 0 & \text { otherwise }\end{cases}
$$

Is it Σ_{1}^{0} ? Recursive? Primitive recursive? You may assume that the function that outputs the $n^{\text {th }}$ decimal digit of π is primitive recursive.
6. Give an example of a \sum_{1}^{0} unary relation that is not recursive. Justify your answer.
7. For each of the following, either prove that it holds for all $\sigma_{\text {arthm }}$-sentences θ or provide an example of a θ for which it fails. Justify your answers.
(a) $\mathrm{PA} \vDash \theta \rightarrow$ Provable $_{\mathrm{PA}}([\theta])$.
(b) $\mathrm{PA} \vDash$ Provable $_{\mathrm{PA}}([\theta]) \rightarrow \theta$.
(c) If $N \vDash \neg \operatorname{Provable}_{\mathrm{PA}}([\theta])$ then $\operatorname{PA} \vDash \neg \operatorname{Provable}_{\mathrm{PA}}([\theta])$.
(d) If PA $\vDash \neg$ Provable $_{\mathrm{PA}}([\theta])$ then $N \vDash \neg$ Provable $_{\mathrm{PA}}([\theta])$.
8. Let $A, B \subseteq \mathbb{N}^{k}$. Prove:
(a) Reduction property for Σ_{1}^{0} : If A, B are Σ_{1}^{0}, then there are disjoint Σ_{1}^{0} sets $A^{*}, B^{*} \subseteq$ \mathbb{N}^{k} such that $A^{*} \subseteq A, B^{*} \subseteq B$ and $A^{*} \cup B^{*}=A \cup B$.
Hint: For $\vec{a} \in \mathbb{N}^{k}$, decide whether to put it in A^{*} or B^{*} based on which of A and B claims it first (i.e. has the smaller witness).
(b) Separation property for Π_{1}^{0} : If A, B are disjoint Π_{1}^{0} sets, then there is a Δ_{1}^{0} (and hence recursive) set $S \subseteq \mathbb{N}^{k}$ such that $S \supseteq A$ and $S^{c} \supseteq B$.
9. Let $n, k \in \mathbb{N}$.
(a) Construct universal sets for $\Sigma_{n}^{0}\left(\mathbb{N}^{k}\right)$ and $\Pi_{n}^{0}\left(\mathbb{N}^{k}\right)$.

Hint: This is in the notes for $n=1$ and the rest is by induction.
(b) Prove that $\Delta_{n}^{0}\left(\mathbb{N}^{k}\right)$ does not admit a universal set.
(c) Deduce that $\Delta_{n}^{0}\left(\mathbb{N}^{k}\right) \subsetneq \Sigma_{n}^{0}\left(\mathbb{N}^{k}\right) \subsetneq \Delta_{n+1}^{0}\left(\mathbb{N}^{k}\right)$ and $\Delta_{n}^{0}\left(\mathbb{N}^{k}\right) \subsetneq \Pi_{n}^{0}\left(\mathbb{N}^{k}\right) \subsetneq \Delta_{n+1}^{0}\left(\mathbb{N}^{k}\right)$. Make sure to also show the inclusions, not just their strictness.
(d) Show that $\bigcup_{n} \Sigma_{n}^{0}=\bigcup_{n} \Delta_{n}^{0}=\bigcup_{n} \Pi_{n}^{0}$ is precisely the class of all arithmetical sets.
(e) Conclude Tarski's theorem that $\ulcorner\mathrm{Th}(N)\urcorner$ is not arithmetical, where $N:=(\mathbb{N}, 0, S,+, \cdot)$.
10. Prove that for a σ-theory T, the following are equivalent:
(1) T is model-complete.
(2) For every model $\boldsymbol{A} \vDash T, T \cup \operatorname{Diag}(\boldsymbol{A})$ is a complete σ_{A}-theory.
(3.a) Every σ-formula $\varphi(\vec{x})$ is equivalent in T to a universal formula.
(3.b) Every σ-formula $\varphi(\vec{x})$ is equivalent in T to an existential formula.

Hint: For $(2) \Rightarrow$ (3.a), mimic the proof of "diagram-complete \Longrightarrow q.e." More precisely, consider the set

$$
\Gamma(\vec{x}):=\{\psi: \psi(\vec{x}) \text { is a universal } \sigma \text {-formula and } T \models \varphi \rightarrow \psi\}
$$

and show that $T \cup \Gamma(\vec{x}) \vDash \varphi$ (the Generalization axiom is involved).
11. Let \mathcal{C} be a class (a set) of σ-structures. Define the theory $\operatorname{Th}(\mathcal{C})$ and the asymptotic theory $\mathrm{Th}_{a}(\mathcal{C})$ of \mathcal{C} as follows: for every σ-sentence φ,

$$
\begin{aligned}
\varphi \in \operatorname{Th}(\mathcal{C}) & : \Leftrightarrow \forall \boldsymbol{M} \in \mathcal{C} \quad \boldsymbol{M} \vDash \varphi, \\
\varphi \in \operatorname{Th}_{a}(\mathcal{C}) & \Leftrightarrow \forall^{\infty} \boldsymbol{M} \in \mathcal{C} \quad \boldsymbol{M} \vDash \varphi,
\end{aligned}
$$

where \forall^{∞} means "for all but finitely many".
(a) Let \mathcal{C} be an infinite class of finite structures that contains only finitely many structures of cardinality n, for each $n \in \mathbb{N}$. Prove that the models of $\mathrm{Th}_{a}(\mathcal{C})$ are exactly the infinite models of $\operatorname{Th}(\mathcal{C})$.

Hint: To prove that any infinite model $\boldsymbol{M} \vDash \operatorname{Th}(\mathcal{C})$ is a model of $\mathrm{Th}_{a}(\mathcal{C})$, note that if $\varphi \in \operatorname{Th}_{a}(\mathcal{C})$, then $\psi \rightarrow \varphi \in \operatorname{Th}_{a}(\mathcal{C})$ for any ψ. Find a suitable ψ that is true in \boldsymbol{M} and $\psi \rightarrow \varphi \in \operatorname{Th}(\mathcal{C})$.
(b) Let $\sigma_{\mathrm{gr}}:=(E)$ be the signature of graphs and for each $n \geq 2$, let G_{n} be the (undirected) graph that is a chain (path) of n vertices, i.e. $\boldsymbol{G}_{n}:=\left(V_{n}, E^{\boldsymbol{G}_{n}}\right)$, where $V_{n}:=\{1,2, \ldots, n\}$ and $u E^{\boldsymbol{G}_{n}} v: \Leftrightarrow|u-v|=1$, for $u, v \in V_{n}$. Let $\mathcal{C}:=\left\{\boldsymbol{G}_{n}: n \geq 2\right\}$. Let

$$
T:=\{\chi, \theta\} \cup\left\{\varphi_{n}, \psi_{n}: n \geq 2\right\},
$$

where

- χ says that E is irreflexive and symmetric.
- θ says that there are exactly two vertices with degree 1 (call them leaves) and all other vertices have degree 2.
- φ_{n} says that there are two leaves whose distance is at least n.
- ψ_{n} says that there are no cycles of length n.

Prove that $T \subseteq \mathrm{Th}_{a}(\mathcal{C})$.
(c) Prove that T is complete.
(d) Conclude that T is an axiomatization of $\mathrm{Th}_{a}(\mathcal{C})$.
(e) Describe all models of $\mathrm{Th}_{a}(\mathcal{C})$.

