MATH 570: MATHEMATICAL LOGIC

POTENTIAL FINAL EXAM PROBLEMS

- **1.** Let (L, <) be a linearly ordered set and let $(A_{\ell})_{\ell \in L}$ be an increasing elementary chain of σ -structures, i.e. $A_{\ell} \leq A_k$ for $\ell \leq k$. Show that $A = \bigcup_{\ell \in L} A_{\ell}$ is a universe of a σ -structure A and that $A_{\ell} \leq A$ for each $\ell \in L$.
- 2. Let M be a σ -structure.

Definition. *M* is said to be *weakly homogeneous* if for every pair $A \subseteq B$ of finitely generated substructures of *M*, every embedding (not necessarily elementary) $h : A \hookrightarrow M$ extends to an embedding $\overline{h} : B \hookrightarrow M$.

Definition. For a subset $A \subseteq M$ and a σ -structure K, a function $h : A \to K$ is called a *partial elementary map* $M \rightharpoonup_e K$ if for every σ -formula $\varphi(\vec{x})$ and $\vec{a} \in A^{|\vec{x}|}$,

 $M \models \varphi(\vec{a})$ if and only if $K \models \varphi(h(\vec{a}))$.

Definition. For an infinite cardinal κ , M is said to be κ -homogenenous if for every $A \subseteq M$ with $|A| < \kappa$ and $a \in M$, every partial elementary map $h : A \to M$ extends to a partial elementary map $\overline{h} : A \cup \{a\} \to M$.

Prove that if M is weakly homogeneous, then for every finitely generated substructure $A \subseteq M$, any embedding $A \hookrightarrow M$ is a partial elementary map $M \to M$. Deduce that weak homogeneity implies \aleph_0 -homogeneity.

3. Give an example of a structure *A* (in some signature) and a definable binary relation *Q* in it such that the unary relation

$$P(y) :\Leftrightarrow \exists^{\infty} x \ Q(x, y)$$

is not definable in *A*, where " $\exists^{\infty}x$ " means "for infinitely many *x*". Provide a proof of every statement you use that claims nondefinability of a set.

- 4. Let $\sigma := (E)$ be the signature of graphs, i.e. *E* is a binary relation symbol.
 - (a) Write down an explicit axiomatization *T* for the class of undirected graphs with no loops, whose connected components are *bi-infinite chains*, i.e. acyclic graphs with the degree of each vertex being 2.
 - (b) Show that *T* is complete.
 - (c) Conclude yet again (for the last time, I promise) that the binary relation R of being in the same connected component is not 0-definable in any disconnected model of T.

HINT: Let $\varphi_R(x, y)$ be a formula defining R in a disconnected model M, so $M \models \exists x \exists y \neg \varphi_R(x, y)$, hence $Z \models \exists x \exists y \neg \varphi_R(x, y)$, where Z is the connected model. Elements $a, b \in Z$ that witness the latter sentence are within finite distance from each other...

- (d) Show that for any $M \models T$ and $a, b \in M$, there is an automorphism g of M with g(a) = b.
- (e) For $M \models T$, exactly which subsets of M are 0-definable in M?

- (f) Finally, prove that *T* is model-complete, but does not admit q.e. Recall that that $\mathbb{FOL}(\sigma)$ includes the 0-ary relation symbols for truth and falsehood, so σ not having a constant symbol is not the reason why *T* doesn't admit q.e.
- **5.** Consider the following function:

 $f(n) = \begin{cases} 1 & \text{if the decimal expression of } \pi \text{ contains } n \text{ consecutive zeroes} \\ 0 & \text{otherwise} \end{cases}$

Is it Σ_1^0 ? Recursive? Primitive recursive? You may assume that the function that outputs the *n*th decimal digit of π is primitive recursive.

- 6. Give an example of a Σ_1^0 unary relation that is not recursive. Justify your answer.
- 7. For each of the following, either prove that it holds for all σ_{arthm} -sentences θ or provide an example of a θ for which it fails. Justify your answers.
 - (a) $PA \models \theta \rightarrow \mathbf{Provable}_{PA}([\theta]).$
 - (b) $PA \models \mathbf{Provable}_{PA}([\theta]) \rightarrow \theta$.
 - (c) If $N \models \neg Provable_{PA}([\theta])$ then $PA \models \neg Provable_{PA}([\theta])$.
 - (d) If $PA \models \neg Provable_{PA}([\theta])$ then $N \models \neg Provable_{PA}([\theta])$.
- 8. Let $A, B \subseteq \mathbb{N}^k$. Prove:
 - (a) Reduction property for Σ_1^0 : If *A*, *B* are Σ_1^0 , then there are disjoint Σ_1^0 sets $A^*, B^* \subseteq \mathbb{N}^k$ such that $A^* \subseteq A$, $B^* \subseteq B$ and $A^* \cup B^* = A \cup B$.

HINT: For $\vec{a} \in \mathbb{N}^k$, decide whether to put it in A^* or B^* based on which of A and B claims it first (i.e. has the smaller witness).

- (b) Separation property for Π_1^0 : If *A*, *B* are disjoint Π_1^0 sets, then there is a Δ_1^0 (and hence recursive) set $S \subseteq \mathbb{N}^k$ such that $S \supseteq A$ and $S^c \supseteq B$.
- 9. Let $n, k \in \mathbb{N}$.
 - (a) Construct universal sets for $\Sigma_n^0(\mathbb{N}^k)$ and $\Pi_n^0(\mathbb{N}^k)$.

HINT: This is in the notes for n = 1 and the rest is by induction.

- (b) Prove that $\Delta_n^0(\mathbb{N}^k)$ does not admit a universal set.
- (c) Deduce that $\Delta_n^0(\mathbb{N}^k) \subsetneq \Sigma_n^0(\mathbb{N}^k) \subsetneq \Delta_{n+1}^0(\mathbb{N}^k)$ and $\Delta_n^0(\mathbb{N}^k) \subsetneq \Pi_n^0(\mathbb{N}^k) \subsetneq \Delta_{n+1}^0(\mathbb{N}^k)$. Make sure to also show the inclusions, not just their strictness.
- (d) Show that $\bigcup_n \Sigma_n^0 = \bigcup_n \Delta_n^0 = \bigcup_n \Pi_n^0$ is precisely the class of all arithmetical sets.
- (e) Conclude Tarski's theorem that Th(N) is not arithmetical, where $N := (\mathbb{N}, 0, S, +, \cdot).$

10. Prove that for a σ -theory *T*, the following are equivalent:

- (1) T is model-complete.
- (2) For every model $A \models T$, $T \cup Diag(A)$ is a complete σ_A -theory.
- (3.a) Every σ -formula $\varphi(\vec{x})$ is equivalent in *T* to a universal formula.
- (3.b) Every σ -formula $\varphi(\vec{x})$ is equivalent in *T* to an existential formula.

HINT: For (2) \Rightarrow (3.a), mimic the proof of "diagram-complete \implies q.e." More precisely, consider the set

 $\Gamma(\vec{x}) \coloneqq \{\psi : \psi(\vec{x}) \text{ is a universal } \sigma \text{-formula and } T \models \varphi \to \psi\}$

and show that $T \cup \Gamma(\vec{x}) \models \varphi$ (the Generalization axiom is involved).

11. Let C be a class (a set) of σ -structures. Define the *theory* Th(C) and the *asymptotic theory* Th_{*a*}(C) of C as follows: for every σ -sentence φ ,

$$\varphi \in \operatorname{Th}(\mathcal{C}) :\Leftrightarrow \forall M \in \mathcal{C} \ M \models \varphi,$$
$$\varphi \in \operatorname{Th}_{a}(\mathcal{C}) :\Leftrightarrow \forall^{\infty} M \in \mathcal{C} \ M \models \varphi,$$

where \forall^{∞} means "for all but finitely many".

(a) Let C be an infinite class of finite structures that contains only finitely many structures of cardinality n, for each $n \in \mathbb{N}$. Prove that the models of $\text{Th}_a(C)$ are exactly the infinite models of Th(C).

HINT: To prove that any infinite model $M \models \text{Th}(\mathcal{C})$ is a model of $\text{Th}_a(\mathcal{C})$, note that if $\varphi \in \text{Th}_a(\mathcal{C})$, then $\psi \to \varphi \in \text{Th}_a(\mathcal{C})$ for any ψ . Find a suitable ψ that is true in M and $\psi \to \varphi \in \text{Th}(\mathcal{C})$.

(b) Let $\sigma_{gr} := (E)$ be the signature of graphs and for each $n \ge 2$, let G_n be the (undirected) graph that is a chain (path) of *n* vertices, i.e. $G_n := (V_n, E^{G_n})$, where $V_n := \{1, 2, ..., n\}$ and $uE^{G_n}v :\Leftrightarrow |u - v| = 1$, for $u, v \in V_n$. Let $C := \{G_n : n \ge 2\}$. Let

$$T := \{\chi, \theta\} \cup \{\varphi_n, \psi_n : n \ge 2\},\$$

where

- χ says that *E* is irreflexive and symmetric.
- θ says that there are exactly two vertices with degree 1 (call them *leaves*) and all other vertices have degree 2.
- φ_n says that there are two leaves whose distance is at least *n*.
- ψ_n says that there are no cycles of length *n*.

Prove that $T \subseteq \operatorname{Th}_{a}(\mathcal{C})$.

- (c) Prove that *T* is complete.
- (d) Conclude that *T* is an axiomatization of $Th_a(\mathcal{C})$.
- (e) Describe all models of $Th_a(\mathcal{C})$.