1. (a) (Optional) Show that the Ackermann function grows faster than any primitive recursive function; more precisely, prove that for any primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, there exists $n_{f} \in \mathbb{N}$ such that $f(\vec{x}) \leq A\left(n_{f},\|\vec{x}\|_{1}\right)$ for all $\vec{x} \in \mathbb{N}^{k}$, where $\|\vec{x}\|_{1}:=x_{1}+\ldots+x_{n}$.
Hint: Prove by induction on the construction of f from the basic functions. You may use all of the properties of the Ackermann function stated in the previous homework even if you did not prove them.

Remark: This problem has less priority than the others, I suggest doing this last.
(b) Conclude that the Ackermann function is not primitive recursive.
2. Follow the outline below to prove-sketch that the class $\mathcal{R}_{0}(\mathbb{N})$ of all primitive recursive functions from \mathbb{N} to \mathbb{N} admits a recursive \mathbb{N}-parameterization $\Lambda: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.

Recall that $\langle\cdot\rangle_{k}$ denotes the k-tuple encoding function and observe that is satisfies the condition

$$
\langle\vec{a}\rangle \geq \max \left\{k, a_{0}, \ldots, a_{k-1}\right\}
$$

for each $\vec{a} \in \mathbb{N}^{k}$. Below, we omit the subscript k. Also, we say a function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is encoded by $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ if for each $\vec{a} \in \mathbb{N}^{k}, f^{\prime}\left(\langle\vec{a}\rangle_{k}\right)=f(\vec{a})$.

Firstly, it is enough to define a recursive function $\Upsilon: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ whose fibers encode all of the primitive recursive functions, i.e. for each primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is $n \in \mathbb{N}$ such that Υ_{n} encodes f. Indeed, one then obtains a recursive \mathbb{N}-parameterization of $\mathcal{R}_{0}(\mathbb{N})$ by taking $\Lambda(n, a):=\Upsilon(n,\langle a\rangle)$.

For obtaining such a function Υ, it is enough to have a recursive function $\Upsilon: \mathbb{N}^{2} \rightarrow \mathbb{N}$ satisfying the following for every $n \in \mathbb{N}$:

- if $n=\langle 0, d, m\rangle$ then Υ_{n} encodes the successor function $S: \mathbb{N} \rightarrow \mathbb{N}$.
- if $n=\langle 1, d, m\rangle$ then Υ_{n} encodes projection function $P_{m}^{(d)}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.
- if $n=\langle 2, d, m\rangle$ then Υ_{n} encodes constant function $C_{m}^{(d)}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.
- if $n=\langle 3, d, m\rangle$, where
- $m=\left\langle n_{0}, \ldots, n_{k}\right\rangle$ for some $k \geq 1$,
$-n_{0}=\left\langle c_{0}, k, m_{0}\right\rangle$,
$-n_{i}=\left\langle c_{i}, d, m_{i}\right\rangle$ for each $i=1, \ldots, k$,
then, letting $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be the function encoded by $\Upsilon_{n_{0}}$ and $h_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$ the functions encoded by $\Upsilon_{n_{i}}, \Upsilon_{n}$ encodes the function $g\left(h_{1}, \ldots, h_{k}\right)$ obtained by composition from g and h_{1}, \ldots, h_{k}.
- if $n=\langle 4, d, m\rangle$, where
$-d \geq 1$
$-m=\left\langle n_{0}, n_{1}\right\rangle$
$-n_{0}=\left\langle j_{0}, d-1, m_{0}\right\rangle$,
$-n_{1}=\left\langle j_{1}, d+1, m_{1}\right\rangle$,
then letting $g: \mathbb{N}^{d-1} \rightarrow \mathbb{N}$ be the function encoded by $\Upsilon_{n_{0}}$ and $h: \mathbb{N}^{d+1} \rightarrow \mathbb{N}$ the function encoded by $\Upsilon_{n_{1}}, \Upsilon_{n}$ encodes the function obtained by primitive recursion from g and h.
To define the value $\Upsilon(n, l)$, one needs to know $\Upsilon\left(n^{\prime}, l^{\prime}\right)$ for only finitely many ($\left.n^{\prime}, l^{\prime}\right)$ with either $n^{\prime}<n$ or $l^{\prime}<l$. Use this and Dedekind's analysis of recursion to define a recursive Υ satisfying all the conditions above. This is done as described in the hint for Question 4 of Homework 8 on the recursivity of the Ackermann function.

3. Prove that all recursive functions and relations are arithmetical, i.e. definable in $N:=(\mathbb{N}, 0, S,+, \cdot)$.
4. (a) Show that for any theory $T \subseteq \operatorname{Th}(N)$, the functions and relations representable in T are arithmetical.
(b) Show that the converse is true for $T:=\operatorname{Th}(N)$.
(c) Do you think the converse is true for PA even just for relations? More precisely, is every relation definable in N representable in PA? What might be a potential issue?
5. Let T be a $\sigma_{\text {arthm }}$-theory satisfying $T \vDash \Delta(n) \neq \Delta(m)$ for all distinct $n, m \in \mathbb{N}$.
(a) Prove in detail that if a function f is representable in T by a formula φ then the same formula represents the graph of f. (This was proven in class.)
(b) Do you think the converse is true for $T:=\operatorname{Th}(N)$? What might be a potential issue?
