1. Let K be a field and let \bar{K} be an algebraic closure of K. A nonconstant polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is called irreducible over K if whenever $f=g \cdot h$ for some $g, h \in K\left[X_{1}, \ldots, X_{n}\right]$, either $\operatorname{deg}(g)=0$ or $\operatorname{deg}(h)=0$. Furthermore, f is called absolutely irreducible if it is irreducible over \bar{K}.

For example, the polynomial $X^{2}+1 \in \mathbb{R}[X]$ is irreducible over \mathbb{R}, but it is not absolutely irreducible since $X^{2}+1=(X+i)(X-i)$ in $\mathbb{C}[X]$. On the other hand, $X Y-1 \in \mathbb{Q}[X, Y]$ is absolutely irreducible.

Denoting $\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$, prove the following:
Theorem (Noether-Ostrowski Irreducibility Theorem). For $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and prime p, let f_{p} denote the polynomial in $\mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$ obtained by applying the canonical map $\mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ to the coefficients of f (i.e. modding out the coefficients by p). For all $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right], f$ is absolutely irreducible (as an element of $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$) if and only if for sufficiently large primes p, f_{p} is absolutely irreducible (as an element of $\mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$).

Hint: Coming up with a proof should be easier than understanding the statement of the problem.
Remark: The original algebraic proof of this theorem is quite involved!
2. Let $\sigma:=(E)$, where E is a binary relation symbol.
(a) Define a theory T whose models are exactly the σ-structures in which E is an equivalence relation with exactly one equivalence class of size n, for each natural number $n \geq 1$.
(b) How many countable models does T have (up to isomorphism)?
(c) How many models of cardinality \aleph_{1} does T have (up to isomorphism)?

Caution: This question is easy but tricky. Look at your solution with a critical eye.
(d) Show that the model \boldsymbol{M}_{ω} of T that is countable and has infinitely many infinite equivalence classes is elementarily universal among countable models, i.e. for every other countable model $\boldsymbol{N} \vDash T, N \hookrightarrow{ }_{e} \boldsymbol{M}_{\omega}$.

Hint: Use the proof of upward Löwenheim-Skolem to build a countable elementary extension of N with the additional requirement of having infinitely-many infinite equivalence classes. Then wake up and realize that what you have built is \boldsymbol{M}_{ω}.
(e) Is T complete? Prove your answer.
3. Review the sketch of Gödel's proof of the Incompleteness theorem and be ready to present it on the board.
4. Prove that Tarski's theorem that $\operatorname{Th}(\boldsymbol{N})$ is not arithmetical (Theorem 5.5 in the current version of the notes) is equivalent to the Fixed Point lemma for N (Lemma 5.4). Don't just say "well, both are true and hence equivalent"; instead, using one as a black box, deduce the other, and vice versa.
5. Review the quine we wrote in class. Explain why it is indeed a quine and what makes this possible.
6. Primitive recursion. Let $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. We say that $f: \mathbb{N}^{k} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined by primitive recursion from g, h if for all $\vec{a} \in \mathbb{N}^{k}$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
f(\vec{a}, 0) & =g(\vec{a}) \\
f(\vec{a}, n+1) & =h(\vec{a}, n, f(\vec{a}, n))
\end{aligned}
$$

(a) Show that $n \mapsto 2^{n}$ is defined by primitive recursion from the constant 1 function and doubling function. Give a couple more examples.
(b) Dedekind's analysis of recursion. Assuming that f is defined by primitive recursion from g, h as above, complete the statement below (replace the dots with a statement) and prove it: for each $\vec{a} \in \mathbb{N}^{k}, n \in \mathbb{N}$, and $m \in \mathbb{N}$,

$$
\begin{aligned}
& f(\vec{a}, n)=m \text { if and only if there is } \vec{b} \in \mathbb{N}^{<\mathbb{N}} \text { such that }|\vec{b}|=n+1 \\
& \qquad \begin{array}{l}
\text { and } \vec{b}(0)=g(\vec{a}) \\
\text { and for each } i<n+1, \ldots \\
\\
\text { and } \vec{b}(n)=m .
\end{array}
\end{aligned}
$$

We refer to this \vec{b} as the certificate verifying that indeed $f(\vec{a}, n)=m$. For example, $(1,2,4,8,16,32)$ is the certificate for $2^{5}=32$.
(c) Suppose that there is an arithmetical function (i.e. definable in $(\mathbb{N}, 0, S,+, \cdot)) \beta: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for each $\vec{b} \in \mathbb{N}^{<\mathbb{N}}$ there is a "code" $w \in \mathbb{N}$ such that for each $i<|\vec{b}|, \beta(w, i)=\vec{b}(i)$ (such a function indeed exists and is called Gödel's coding function). Prove that if f is defined by primitive recursion from arithmetical functions g, h, then f is again arithmetical.

