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Math 570: Mathematical Logic HoMEwWORK 7 Due: Nov 2-3

1. Let K be a field and let K be an algebraic closure of K. A nonconstant polynomial f € K[Xj,..., X,,]
is called irreducible over K if whenever f = g-h for some g,h € K[Xy,...,X,,], either deg(g) = 0 or
deg(h) = 0. Furthermore, f is called absolutely irreducible if it is irreducible over K.

For example, the polynomial X? + 1 € R[X] is irreducible over IR, but it is not absolutely
irreducible since X? + 1 = (X +i)(X —i) in C[X]. On the other hand, XY -1 € Q[X, Y] is absolutely
irreducible.

Denoting [F, := Z/pZ, prove the following:

Theorem (Noether-Ostrowski Irreducibility Theorem). For f € Z[X;,..., X,] and prime p, let f,
denote the polynomial in Fy[X,,..., X,,] obtained by applying the canonical map Z — Z/pZ to the
coefficients of f (i.e. modding out the coefficients by p). For all f € Z[Xy,..,X,], f is absolutely
irreducible (as an element of Q[Xy,..., X,,]) if and only if for sufficiently large primes p, f, is absolutely
irreducible (as an element of Fy[ Xy, ..., X, ]).

Hint: Coming up with a proof should be easier than understanding the statement of the problem.

Remark: The original algebraic proof of this theorem is quite involved!

2. Let 0 :=(E), where E is a binary relation symbol.

(a) Define a theory T whose models are exactly the o-structures in which E is an equivalence
relation with exactly one equivalence class of size n, for each natural number n > 1.

(b) How many countable models does T have (up to isomorphism)?

(c) How many models of cardinality §; does T have (up to isomorphism)?

Caurion: This question is easy but tricky. Look at your solution with a critical eye.

(d) Show that the model M, of T that is countable and has infinitely many infinite equivalence
classes is elementarily universal among countable models, i.e. for every other countable model
NET,N—,M,.

HinT: Use the proof of upward Léwenheim—-Skolem to build a countable elementary extension
of N with the additional requirement of having infinitely-many infinite equivalence classes.
Then wake up and realize that what you have built is M ,,.

(e) Is T complete? Prove your answer.

3. Review the sketch of Godel’s proof of the Incompleteness theorem and be ready to present it on
the board.

4. Prove that Tarski’s theorem that Th(N) is not arithmetical (Theorem 5.5 in the current version of
the notes) is equivalent to the Fixed Point lemma for N (Lemma 5.4). Don’t just say “well, both are
true and hence equivalent”; instead, using one as a black box, deduce the other, and vice versa.

5. Review the quine we wrote in class. Explain why it is indeed a quine and what makes this possible.
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6. Primitive recursion. Let ¢ : INF — IN and 4 : N¥ x N x N — IN. We say that f : N* xIN — IN is
defined by primitive recursion from g, h if for all #€ INF and n e N,

()
(b)

f(@0)=g(a
fl@n+1)=h(@n, f(a@n))

Show that n +— 2" is defined by primitive recursion from the constant 1 function and doubling
function. Give a couple more examples.

Dedekind’s analysis of recursion. Assuming that f is defined by primitive recursion from
g, h as above, complete the statement below (replace the dots with a statement) and prove it:
for each 7€ N¥, n € N, and m € N,

f(@,n) = mif and only if there is b e NN such that |I§| =n+1

and b(0) = g(a)
and foreachi<n+1,...

—

and b(n) = m.

We refer to this b as the certificate verifying that indeed f (4, n) = m. For example, (1,2,4,8,16,32)
is the certificate for 2° = 32.
Suppose that there is an arithmetical function (i.e. definable in (IN,0,S,+,)) B : IN2 — N such

that for each b € N<N there is a “code” w € N such that for each i < |E|, B(w,1) = y(z) (such
a function indeed exists and is called Godel’s coding function). Prove that if f is defined by
primitive recursion from arithmetical functions g, h, then f is again arithmetical.



