Math 570: Mathematical Logic

Homework 7

Due: Nov 2-3

1. Let *K* be a field and let \overline{K} be an algebraic closure of *K*. A nonconstant polynomial $f \in K[X_1, ..., X_n]$ is called *irreducible over K* if whenever $f = g \cdot h$ for some $g, h \in K[X_1, ..., X_n]$, either deg(g) = 0 or deg(h) = 0. Furthermore, *f* is called *absolutely irreducible* if it is irreducible over \overline{K} .

For example, the polynomial $X^2 + 1 \in \mathbb{R}[X]$ is irreducible over \mathbb{R} , but it is not absolutely irreducible since $X^2 + 1 = (X + i)(X - i)$ in $\mathbb{C}[X]$. On the other hand, $XY - 1 \in \mathbb{Q}[X, Y]$ is absolutely irreducible.

Denoting $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$, prove the following:

Theorem (Noether-Ostrowski Irreducibility Theorem). For $f \in \mathbb{Z}[X_1,...,X_n]$ and prime p, let f_p denote the polynomial in $\mathbb{F}_p[X_1,...,X_n]$ obtained by applying the canonical map $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ to the coefficients of f (i.e. modding out the coefficients by p). For all $f \in \mathbb{Z}[X_1,...,X_n]$, f is absolutely irreducible (as an element of $\mathbb{Q}[X_1,...,X_n]$) if and only if for sufficiently large primes p, f_p is absolutely irreducible (as an element of $\mathbb{F}_p[X_1,...,X_n]$).

HINT: Coming up with a proof should be easier than understanding the statement of the problem.

REMARK: The original algebraic proof of this theorem is quite involved!

- **2.** Let $\sigma := (E)$, where *E* is a binary relation symbol.
 - (a) Define a theory *T* whose models are exactly the σ -structures in which *E* is an equivalence relation with exactly one equivalence class of size *n*, for each natural number $n \ge 1$.
 - (b) How many countable models does *T* have (up to isomorphism)?
 - (c) How many models of cardinality \aleph_1 does *T* have (up to isomorphism)?

CAUTION: This question is easy but tricky. Look at your solution with a critical eye.

(d) Show that the model M_{ω} of T that is countable and has infinitely many infinite equivalence classes is *elementarily universal* among countable models, i.e. for every other countable model $N \models T$, $N \hookrightarrow_e M_{\omega}$.

HINT: Use the proof of upward Löwenheim–Skolem to build a countable elementary extension of N with the additional requirement of having infinitely-many infinite equivalence classes. Then wake up and realize that what you have built is M_{ω} .

- (e) Is *T* complete? Prove your answer.
- **3.** Review the sketch of Gödel's proof of the Incompleteness theorem and be ready to present it on the board.
- 4. Prove that Tarski's theorem that Th(N) is not arithmetical (Theorem 5.5 in the current version of the notes) is equivalent to the Fixed Point lemma for N (Lemma 5.4). Don't just say "well, both are true and hence equivalent"; instead, using one as a black box, deduce the other, and vice versa.
- 5. Review the quine we wrote in class. Explain why it is indeed a quine and what makes this possible.

6. Primitive recursion. Let $g : \mathbb{N}^k \to \mathbb{N}$ and $h : \mathbb{N}^k \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. We say that $f : \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ is defined by *primitive recursion* from g, h if for all $\vec{a} \in \mathbb{N}^k$ and $n \in \mathbb{N}$,

$$f(\vec{a}, 0) = g(\vec{a})$$
$$f(\vec{a}, n+1) = h(\vec{a}, n, f(\vec{a}, n))$$

- (a) Show that $n \mapsto 2^n$ is defined by primitive recursion from the constant 1 function and doubling function. Give a couple more examples.
- (b) **Dedekind's analysis of recursion.** Assuming that f is defined by primitive recursion from g, h as above, complete the statement below (replace the dots with a statement) and prove it: for each $\vec{a} \in \mathbb{N}^k$, $n \in \mathbb{N}$, and $m \in \mathbb{N}$,

$$f(\vec{a}, n) = m$$
 if and only if there is $\vec{b} \in \mathbb{N}^{<\mathbb{N}}$ such that $|\vec{b}| = n + 1$
and $\vec{b}(0) = g(\vec{a})$
and for each $i < n + 1, ...$
and $\vec{b}(n) = m$.

We refer to this \vec{b} as the *certificate* verifying that indeed $f(\vec{a}, n) = m$. For example, (1, 2, 4, 8, 16, 32) is the certificate for $2^5 = 32$.

(c) Suppose that there is an arithmetical function (i.e. definable in $(\mathbb{N}, 0, S, +, \cdot)$) $\beta : \mathbb{N}^2 \to \mathbb{N}$ such that for each $\vec{b} \in \mathbb{N}^{<\mathbb{N}}$ there is a "code" $w \in \mathbb{N}$ such that for each $i < |\vec{b}|$, $\beta(w, i) = \vec{b}(i)$ (such a function indeed exists and is called *Gödel's coding function*). Prove that if f is defined by primitive recursion from arithmetical functions g, h, then f is again arithmetical.