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Math 570: Mathematical Logic Homework 7 Due: Nov 2–3

1. Let K be a field and let K be an algebraic closure of K . A nonconstant polynomial f ∈ K[X1, ...,Xn]
is called irreducible over K if whenever f = g · h for some g,h ∈ K[X1, ...,Xn], either deg(g) = 0 or
deg(h) = 0. Furthermore, f is called absolutely irreducible if it is irreducible over K .

For example, the polynomial X2 + 1 ∈ R[X] is irreducible over R, but it is not absolutely
irreducible since X2 + 1 = (X + i)(X − i) in C[X]. On the other hand, XY − 1 ∈Q[X,Y ] is absolutely
irreducible.

Denoting Fp
..= Z/pZ, prove the following:

Theorem (Noether-Ostrowski Irreducibility Theorem). For f ∈ Z[X1, ...,Xn] and prime p, let fp
denote the polynomial in Fp[X1, ...,Xn] obtained by applying the canonical map Z → Z/pZ to the
coefficients of f (i.e. modding out the coefficients by p). For all f ∈ Z[X1, ...,Xn], f is absolutely
irreducible (as an element of Q[X1, ...,Xn]) if and only if for sufficiently large primes p, fp is absolutely
irreducible (as an element of Fp[X1, ...,Xn]).

Hint: Coming up with a proof should be easier than understanding the statement of the problem.

Remark: The original algebraic proof of this theorem is quite involved!

2. Let σ ..= (E), where E is a binary relation symbol.

(a) Define a theory T whose models are exactly the σ -structures in which E is an equivalence
relation with exactly one equivalence class of size n, for each natural number n ≥ 1.

(b) How many countable models does T have (up to isomorphism)?

(c) How many models of cardinality ℵ1 does T have (up to isomorphism)?

Caution: This question is easy but tricky. Look at your solution with a critical eye.

(d) Show that the model Mω of T that is countable and has infinitely many infinite equivalence
classes is elementarily universal among countable models, i.e. for every other countable model
N |= T , N ↪→e Mω.

Hint: Use the proof of upward Löwenheim–Skolem to build a countable elementary extension
of N with the additional requirement of having infinitely-many infinite equivalence classes.
Then wake up and realize that what you have built is Mω.

(e) Is T complete? Prove your answer.

3. Review the sketch of Gödel’s proof of the Incompleteness theorem and be ready to present it on
the board.

4. Prove that Tarski’s theorem that Th(N ) is not arithmetical (Theorem 5.5 in the current version of
the notes) is equivalent to the Fixed Point lemma for N (Lemma 5.4). Don’t just say “well, both are
true and hence equivalent”; instead, using one as a black box, deduce the other, and vice versa.

5. Review the quine we wrote in class. Explain why it is indeed a quine and what makes this possible.
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6. Primitive recursion. Let g : Nk →N and h : Nk ×N ×N→N. We say that f : Nk ×N→N is
defined by primitive recursion from g,h if for all ~a ∈Nk and n ∈N,

f (~a,0) = g(~a)

f (~a,n+ 1) = h(~a,n,f (~a,n))

(a) Show that n 7→ 2n is defined by primitive recursion from the constant 1 function and doubling
function. Give a couple more examples.

(b) Dedekind’s analysis of recursion. Assuming that f is defined by primitive recursion from
g,h as above, complete the statement below (replace the dots with a statement) and prove it:
for each ~a ∈Nk ,n ∈N, and m ∈N,

f (~a,n) =m if and only if there is ~b ∈N<N such that |~b| = n+ 1

and ~b(0) = g(~a)

and for each i < n+ 1, . . .

and ~b(n) =m.

We refer to this~b as the certificate verifying that indeed f (~a,n) =m. For example, (1,2,4,8,16,32)
is the certificate for 25 = 32.

(c) Suppose that there is an arithmetical function (i.e. definable in (N,0,S,+, ·)) β : N2→N such

that for each ~b ∈N<N there is a “code” w ∈N such that for each i < |~b|, β(w,i) = ~b(i) (such
a function indeed exists and is called Gödel’s coding function). Prove that if f is defined by
primitive recursion from arithmetical functions g,h, then f is again arithmetical.

2


