Math 570: Mathematical Logic

Homework 6

Due: Oct 26–27

1. The following is a well known theorem of additive combinatorics:

Theorem (van der Waerden). Suppose \mathbb{N} is finitely colored. Then one of the color classes contains arbitrarily long arithmetic progressions.

Use this theorem and the Compactness theorem to derive the following finitary version:

Theorem. Given any positive integers m and k, there exists $N \in \mathbb{N}$ such that whenever $\{0, 1, ..., N - 1\}$ is colored with m colors, one of the color classes contains an arithmetic progression of length k.

- 2. Let $G_2 := (V, E)$ be the graph consisting of 2 bi-infinite paths (i.e. \mathbb{Z} -lines), denote these paths by *A* and *B*. Prove that the connectedness relation $R \subseteq V^2$ (i.e. the relation between two vertices of being connected by a path) is not definable in G_2 as follows: suppose towards a contradiction that there is a formula $\varphi(x, y, \vec{z})$ and a vector $\vec{p} \subseteq V^{|\vec{p}|}$ such that $R = \{(a, b) \in V^2 : G_2 \models \varphi(a, b, \vec{p})\}$. Build an elementary extension of G_2 containing two other bi-infinite paths C, D such that $\varphi(x, y, \vec{z})$ holds between elements of *C* and *A* but doesn't hold between elements of *D* and *A*. Obtain a contradiction by swapping *C* and *D*.
- **3.** For $k \ge 1$, let G_k be the graph consisting of *k*-many bi-infinite paths.
 - (a) Prove that there is a countable elementary extension \overline{G} of G_k that has infinitely-many connected components.
 - (b) Prove that any such \overline{G} is isomorphic to the graph G_{\aleph_0} consisting of \aleph_0 -many bi-infinite paths.
 - (c) Deduce that $G_{\ell} \leq G_k$, for any $1 \leq \ell \leq k$.
 - (d) Deduce further that the connectedness relation between two vertices is not 0-definable in G_k , for any $k \in \{2, 3, ...\} \cup \{\aleph_0\}$.
- **4.** Prove directly, without referring to anything proven in lecture, that the class of disconnected graphs is not axiomatizable.
- 5. Let DLO denote the theory of dense linear orderings without endpoints.
 - (a) Show that DLO is \aleph_0 -categorical, and hence (\mathbb{Q} , <) is the only (up to isomorphism) countable dense linear ordering without endpoints.

HINT: Enumerate the two models and recursively construct a sequence of finite partial isomorphisms by going back and forth between the models.

(b) Let $\sigma_n := (\langle c_1, ..., c_n \rangle)$, where c_i are constant symbols. Show that the theory

 $DLO_n := DLO \cup \{c_i < c_{i+1} : i < n\}$

is \aleph_0 -categorical. Conclude that DLO_n is complete.

(c) Let $\sigma_{\infty} = (\langle i \in \mathbb{N} \rangle)$, where c_i are constant symbols. Show that the theory

 $DLO_{\infty} = DLO \cup \{c_i < c_{i+1} : i \in \mathbb{N}\}$

has exactly three countable nonisomorphic models and hence is not \aleph_0 -categorical.

(d) Yet, prove that DLO_∞ is complete.