1. Let T be a σ-theory.
(a) We say that T induces the subset $\langle T\rangle:=\bigcap_{\phi \in T}\langle\phi\rangle$ of the topological space \mathcal{T}_{σ} of all maximally σ-complete satisfiable theories. What does the statement that T is finitely axiomatizable correspond to in terms of $\langle T\rangle$ topologically? In other words, fill in the blank in the following proposition and prove it.

Proposition. T is finitely axiomatizable if and only if $\langle T\rangle$ is a \qquad subset of \mathcal{T}_{σ}.
(b) Show that for every finitely axiomatizable theory T contains a finite axiomatization of itself, i.e. there is a finite subset $T_{0} \subseteq T$ with $\boldsymbol{M}_{\sigma}\left(T_{0}\right)=\boldsymbol{M}_{\sigma}(T)$.
2. A graph $\boldsymbol{G}:=(V, E)$ is called bipartite if there is a partition $V=V_{1} \uplus V_{2}$ into disjoint nonempty parts V_{1}, V_{2} such that there is no edge between the vertices in the same part, i.e. $E \cap V_{i}^{2}=\emptyset$ for each $i \in\{1,2\}$. Note that this definition is not first-order as it involves quantification over subsets of the underlying set.
(a) Nevertheless, show that the class of bipartite graphs is axiomatizable.

Hint: Find/google an equivalent condition that is first-order.
(b) However, show that the class of bipartite graphs is not finitely axiomatizable.
3. Prove that in an undirected locally finite ${ }^{1} \operatorname{graph} \boldsymbol{G}:=(V, E)$, if every finite subgraph is contained in a finite subgraph that admits a perfect matching ${ }^{2}$, then the entire graph G admits a perfect matching.
4. Show that the following classes of structures are not axiomatizable:
(a) cyclic groups,

Hint: Think about cardinalities of models of a hypothetical axiomatization.
(b) torsion groups,
(c) connected graphs.

Hint: Add two new constant symbols c_{1}, c_{2} to the signature, and, given a hypothetical axiomatization, slowly add new sentences to it regarding the graph-distance between c_{1} and c_{2}, so that the resulting theory is still finitely satisfiable, but its models are necessarily disconnected graphs.
5. Let $M \models \mathrm{PA}$.
(a) Let $N:=\left(\mathbb{N}, 0^{N}, S^{N},+^{N}, N^{N}\right)$ denote the standard model of PA, i.e. the usual natural numbers. Show that there is a unique homomorphism $f: N \rightarrow M$ and this f is one-to-one, and hence (why?) is a $\sigma_{\text {arthm }}$-embedding.

[^0](b) In the notation of (a), define the standard part of M by
$$
\mathbb{N}^{M}=f[\mathbb{N}]
$$

Show that if \boldsymbol{M} is nonstandard then \mathbb{N}^{M} is not definable in \boldsymbol{M}.
Hint: Induction schema
(c) (Overspill) Assume \boldsymbol{M} is nonstandard, and let $\phi(x, \vec{y})$ be a $\sigma_{\text {arthm }}$-formula, where \vec{y} is a k-vector and $\vec{a} \in M^{k}$. Show that if $M \vDash \phi(n, \vec{a})$ for infinitely many $n \in \mathbb{N}^{M}$, then there is $w \in M \backslash \mathbb{N}^{M}$ such that $M \models \phi(w, \vec{a})$. In other words, if a statement is true about infinitely many natural numbers, then it is true about an infinite ${ }^{3}$ number.
6. Give an example of structures $\boldsymbol{A} \leq \boldsymbol{B}$ that demonstrate the failure of the converse of

Problem 2 of HW3. For σ-structures $\boldsymbol{A} \subseteq \boldsymbol{B}$, if for any finite $P \subseteq A$ and $b \in B$, there exists an automorphism f of \boldsymbol{B} that fixes P pointwise and $f(b) \in A$, then $\boldsymbol{A} \leq \boldsymbol{B}$.
7. This problem illustrates the (crazy) structure of the nonstandard models of PA. Let M be a nonstandard model of PA and let \mathbb{N}^{M} be its standard part. By replacing it with \mathbb{N}, we can assume without loss of generality that $\mathbb{N}^{M}=\mathbb{N}$.
(a) For $a, b \in M$, let $|a-b|$ denote the unique $d \in M$ such that $a+d=b$ or $b+d=a$ (why does such exist?). For all $a, b \in M$, define

$$
a \sim b: \Leftrightarrow|a-b| \in \mathbb{N} .
$$

Show that \sim is an equivalence relation on M and that it is NOT definable in \boldsymbol{M}.
(b) Put $Q=M / \sim$, so $Q=\{[a]: a \in M\}$, where [a] denotes the equivalence class of a. Define the relation $<_{Q}$ on Q as follows: for all $[a],[b] \in Q$,

$$
[a]<_{Q}[b]: \Leftrightarrow \exists c \in M \backslash \mathbb{N} \text { such that } a+c=b
$$

Show that $<_{Q}$ is well-defined (does not depend on the representatives a, b) and is a linear ordering on Q.
(c) Show that the ordering $\left(Q,<_{Q}\right)$ has a least element but no greatest element; moreover, show that it is a dense (in itself), i.e. for all $u, v \in Q$,

$$
u<_{Q} v \Rightarrow \exists w\left(u<_{Q} w<_{Q} v\right) .
$$

[^1]
[^0]: ${ }^{1}$ A graph is called locally finite if every vertex has only finitely many neighbors.
 ${ }^{2}$ In an undirected graph $G:=(V, E)$, a perfect matching is a subset $P \subseteq E$ of (undirected) edges such that each vertex $v \in V$ is incident to exactly one edge in P.

[^1]: ${ }^{3}$ An element $a \in M$ is said to be infinite if it is greater than every standard natural number.

