Math 570: Mathematical Logic

Homework 5

Due: Oct 19–20

- **1.** Let *T* be a σ -theory.
 - (a) We say that *T* induces the subset $\langle T \rangle := \bigcap_{\phi \in T} \langle \phi \rangle$ of the topological space \mathcal{T}_{σ} of all maximally σ -complete satisfiable theories. What does the statement that *T* is finitely axiomatizable correspond to in terms of $\langle T \rangle$ topologically? In other words, fill in the blank in the following proposition and prove it.

Proposition. *T* is finitely axiomatizable if and only if $\langle T \rangle$ is a _____ subset of \mathcal{T}_{σ} .

- (b) Show that for every finitely axiomatizable theory *T* contains a finite axiomatization of itself, i.e. there is a finite subset $T_0 \subseteq T$ with $M_{\sigma}(T_0) = M_{\sigma}(T)$.
- 2. A graph G := (V, E) is called *bipartite* if there is a partition $V = V_1 \uplus V_2$ into disjoint nonempty parts V_1, V_2 such that there is no edge between the vertices in the same part, i.e. $E \cap V_i^2 = \emptyset$ for each $i \in \{1, 2\}$. Note that this definition is not first-order as it involves quantification over subsets of the underlying set.
 - (a) Nevertheless, show that the class of bipartite graphs is axiomatizable.

HINT: Find/google an equivalent condition that is first-order.

- (b) However, show that the class of bipartite graphs is not finitely axiomatizable.
- 3. Prove that in an undirected locally finite¹ graph G := (V, E), if every finite subgraph is contained in a finite subgraph that admits a perfect matching², then the entire graph *G* admits a perfect matching.
- 4. Show that the following classes of structures are not axiomatizable:
 - (a) cyclic groups,

HINT: Think about cardinalities of models of a hypothetical axiomatization.

- (b) torsion groups,
- (c) connected graphs.

HINT: Add two new constant symbols c_1, c_2 to the signature, and, given a hypothetical axiomatization, slowly add new sentences to it regarding the graph-distance between c_1 and c_2 , so that the resulting theory is still finitely satisfiable, but its models are necessarily disconnected graphs.

- 5. Let $M \models PA$.
 - (a) Let $N := (\mathbb{N}, 0^N, S^N, +^N, \cdot^N)$ denote the standard model of PA, i.e. the usual natural numbers. Show that there is a unique homomorphism $f : N \to M$ and this f is one-to-one, and hence (why?) is a σ_{arthm} -embedding.

¹A graph is called *locally finite* if every vertex has only finitely many neighbors.

²In an undirected graph G := (V, E), a *perfect matching* is a subset $P \subseteq E$ of (undirected) edges such that each vertex $v \in V$ is incident to exactly one edge in P.

(b) In the notation of (a), define the standard part of *M* by

$$\mathbb{N}^M = f[\mathbb{N}].$$

Show that if M is nonstandard then \mathbb{N}^M is not definable in M. HINT: Induction schema

- (c) (Overspill) Assume M is nonstandard, and let $\phi(x, \vec{y})$ be a σ_{arthm} -formula, where \vec{y} is a k-vector and $\vec{a} \in M^k$. Show that if $M \models \phi(n, \vec{a})$ for infinitely many $n \in \mathbb{N}^M$, then there is $w \in M \setminus \mathbb{N}^M$ such that $M \models \phi(w, \vec{a})$. In other words, if a statement is true about infinitely many natural numbers, then it is true about an infinite³ number.
- 6. Give an example of structures $A \leq B$ that demonstrate the failure of the converse of **Problem 2 of HW3.** For σ -structures $A \subseteq B$, if for any finite $P \subseteq A$ and $b \in B$, there exists an automorphism f of B that fixes P pointwise and $f(b) \in A$, then $A \leq B$.
- 7. This problem illustrates the (crazy) structure of the nonstandard models of PA. Let M be a nonstandard model of PA and let \mathbb{N}^M be its standard part. By replacing it with \mathbb{N} , we can assume without loss of generality that $\mathbb{N}^M = \mathbb{N}$.
 - (a) For $a, b \in M$, let |a b| denote the unique $d \in M$ such that a + d = b or b + d = a (why does such exist?). For all $a, b \in M$, define

$$a \sim b : \Leftrightarrow |a - b| \in \mathbb{N}.$$

Show that \sim is an equivalence relation on *M* and that it is NOT definable in *M*.

(b) Put Q = M/ ~, so Q = {[a] : a ∈ M}, where [a] denotes the equivalence class of a. Define the relation <_Q on Q as follows: for all [a], [b] ∈ Q,

 $[a] <_O [b] :\Leftrightarrow \exists c \in M \setminus \mathbb{N}$ such that a + c = b

Show that $<_Q$ is well-defined (does not depend on the representatives *a*, *b*) and is a linear ordering on *Q*.

(c) Show that the ordering $(Q, <_Q)$ has a least element but no greatest element; moreover, show that it is a *dense* (in itself), i.e. for all $u, v \in Q$,

 $u <_Q v \Rightarrow \exists w (u <_Q w <_Q v).$

³An element $a \in M$ is said to be *infinite* if it is greater than every standard natural number.