Math 570: Mathematical Logic

- 1. (Weak Lefschetz Principle) Let ϕ be a τ_{ring} -sentence. Show that if ACF₀ $\vdash \phi$, then for large enough primes p, ACF_p $\vdash \phi$.
- 2. Fill in the details of the proofs of (d), (e), (f) of Proposition 2.12.
- 3. Fill in the details of the proof of the Constant Substitution lemma.
- 4. Let $\mathcal{T}_{\sigma}^{\text{Con}}$ be the set of maximally complete consistent theories. Denote by \mathcal{D}_{σ} the collection of the subsets of $\mathcal{T}_{\sigma}^{\text{Con}}$ of the form $\langle \phi \rangle := \{T \in \mathcal{T}_{\sigma}^{\text{Con}} : T \ni \phi\}$, where ϕ is a σ -sentence. Equip $\mathcal{T}_{\sigma}^{\text{Con}}$ with the topology generated by \mathcal{D}_{σ} and prove that it is zero-dimensional compact Hausdorff.

REMARK: Recall the space $\mathcal{T}_{\sigma}^{\text{Sat}}$ of maximally complete satisfiable theories (defined in Homework 3). By definition, $\mathcal{T}_{\sigma}^{\text{Sat}}$ is a subspace of $\mathcal{T}_{\sigma}^{\text{Con}}$, i.e. the topology on $\mathcal{T}_{\sigma}^{\text{Sat}}$ defined in Homework 3 (trivially) coincides with the relative topology of $\mathcal{T}_{\sigma}^{\text{Con}}$. The Completeness theorem is equivalent to $\mathcal{T}_{\sigma}^{\text{Sat}} = \mathcal{T}_{\sigma}^{\text{Con}}$.

- **5.** Pick any two of the following statements and prove them. You may assume the preceding statements in your proofs.
 - (a) (0 is also a left-identity) $PA \vdash \forall x(0 + x \doteq x)$.
 - (b) (Associativity of +) PA $\vdash \forall x \forall y \forall z ((x + y) + z \doteq x + (y + z)).$
 - (c) (Commutativity of +) $PA \vdash \forall x \forall y(x + y \doteq y + x)$.
- 6. Consider the following (finite) theory, the so called Robinson's system Q: (Q1) $\forall x(\neg S(x) \doteq 0)$,
 - (Q2) $\forall x \forall y (S(x) \doteq S(y) \rightarrow x \doteq y),$
 - (Q3) $\forall x(x+0 \doteq x)$,
 - (Q4) $\forall x \forall y (S(x+y) \doteq x + S(y)),$
 - (Q5) $\forall x(x \cdot 0 \doteq 0),$
 - (Q6) $\forall x \forall y (x \cdot S(y) \doteq x \cdot y + x),$
 - (Q7) $\forall x \Big(x \neq 0 \rightarrow \exists y \Big[x \doteq S(y) \Big] \Big).$ Show:
 - (a) $Q \nvDash \forall x \forall y \forall z [(x+y) + z \doteq x + (y+z)].$
 - (b) $Q \not\models \forall x(0 + x \doteq x).$
 - (c) $Q \nvDash \forall x \forall y (x + y \doteq y + x).$