Math 570: Mathematical Logic HOMEWORK 3 Due: Sept 28–29

- 1. (Chasing definitions) Working in signature σ , prove:
 - (a) A theory is semantically complete if and only if any two models of it are elementarily equivalent.
 - (b) Every satisfiable theory admits a satisfiable maximal completion.
 - (c) Every satisfiable semantically complete theory admits a unique satisfiable maximal completion.
- 2. The following is a very useful sufficient condition for being an elementary substructure. Let $A \subseteq B$ and assume that for any finite $P \subseteq A$ and $b \in B$, there exists an automorphism f of B that fixes P pointwise (i.e. f(p) = p for all $p \in P$) and $f(b) \in A$. Show that $A \preceq B$.

3. Show that $(\mathbb{Q}, <) \leq (\mathbb{R}, <)$. Conclude that $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$, but $(\mathbb{Q}, <) \not\cong (\mathbb{R}, <)$. HINT: Use Exercise 2.

- 4. Let $\mathbf{B} = (B, E)$ be a countable graph, each of whose vertices have degree at most 1. Suppose further that \mathbf{B} has infinitely many vertices of degree¹ 0 and infinitely many of degree 1.
 - (a) Find a substructure $A \subseteq B$ that is isomorphic to B and yet is not an elementary substructure of B.

REMARK: Note that $A \cong B$ implies $A \equiv B$. Thus, this is an example of a substructure that is elementarily equivalent to the larger structure and yet isn't an elementary substructure.

- (b) Find elementary substructures $A_0, A_1 \leq B$ with $A_0 \cap A_1 \not\leq B$.
- 5. Let σ be a signature and show that the following are equivalent:
 - (I) For any σ -theory $T, T \models \varphi$ implies that there is finite $T_0 \subseteq T$ with $T_0 \models \varphi$.
 - (II) For any σ -theory T, T not satisfiable (semantically inconsistent) implies that some finite $T_0 \subseteq T$ is not satisfiable.
- 6. For a fixed signature σ , let \mathcal{T}_{σ} denote the set of all satisfiable maximally complete theories. Denote by \mathcal{D}_{σ} the collection of the subsets of \mathcal{T}_{σ} of the form $\langle \varphi \rangle := \{T \in \mathcal{T} : T \models \varphi\}$, where φ is a σ -sentence. Equip \mathcal{T}_{σ} with the topology generated by \mathcal{D}_{σ} .
 - (a) Show that \mathcal{D}_{σ} is a Boolean is a (Boolean) algebra. In particular, the sets in \mathcal{D}_{σ} are clopen and \mathcal{D}_{σ} is a basis for this topology, making it zero-dimensional² Hausdorff.
 - (b) Prove that the compactness of this space \mathcal{T}_{σ} is equivalent to the statements in Exercise 5.

 $^{^{1}}$ In an (undirected) graph, the *degree* of a vertex is the number of its neighbors.

²A topology is called *zero-dimensional* if it has a basis consisting of clopen sets.

HINT: Use the equivalent statement to compactness that involves closed sets, namely: A topological space is *compact* if and only if every family of closed sets with the finite intersection property³ has a nonempty intersection.

7. (The Skolem "paradox") Conclude from the Löwenheim–Skolem theorem that any satisfiable σ -theory T has a model of cardinality at most max $\{|\sigma|, \aleph_0\}$. In particular, if ZFC is satisfiable, then it has a countable model $\mathbf{M} := (M, \epsilon^{\mathbf{M}})$; without loss of generality, we may assume $M = \mathbb{N}$, so $\epsilon^{\mathbf{M}} \subseteq \mathbb{N}^2$.

Let $\varphi(x, y)$ be an (ϵ) -formula expressing a statement that we read as "there is no surjection from x to y". Let $\mathbb{N}^M, \mathbb{R}^M$ be the elements of the universe $M = \mathbb{N}$ (say, $\mathbb{N}^M = 42, \mathbb{R}^M = 19$) that fulfill (as calculated in M) the definitions of what we read as "being the sets of natural numbers and reals".

The ZFC axioms and Cantor's theorem ensure that $M \models \varphi(\mathbb{N}^M, \mathbb{R}^M)$, which we read as "reals are uncountable". Explain why there is no paradox here.

HINT: Stick with the definitions—avoid philosophy.

REMARK: Wondering whether this is a paradox is analogous to wondering where the missing dollar went in the Missing Dollar Riddle [https://en.wikipedia.org/wiki/Missing_dollar_riddle].

³A family \mathcal{F} of sets is said to have the *finite intersection property* if for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$, $\bigcap_{S \in \mathcal{F}_0} S \neq \emptyset$.