Math 570: Mathematical Logic

```
Due: Sept 21-22
```

- 1. (a) A σ -formula is called *universal* (resp. *existential*) if it is of the form $\forall x_1 \forall x_2 ... \forall x_n \psi$ (resp. $\exists x_1 \exists x_2 ... \exists x_n \psi$), where ψ is quantifier free. Let $\boldsymbol{A}, \boldsymbol{B}$ be σ -structures with $\boldsymbol{A} \subseteq \boldsymbol{B}$ and let $\varphi(\vec{v})$ be a σ -formula. Show that for any $\vec{a} \in A^n$,
 - (i) if φ is quantifier free, then $\mathbf{A} \models \varphi(\vec{a}) \iff \mathbf{B} \models \varphi(\vec{a})$;
 - (ii) if φ is universal, then $\boldsymbol{B} \models \varphi(\vec{a}) \implies \boldsymbol{A} \models \varphi(\vec{a})$;
 - (iii) if φ is existential, then $\mathbf{A} \models \varphi(\vec{a}) \implies \mathbf{B} \models \varphi(\vec{a})$.
 - (b) Find a sentence that is true in $(\mathbb{N}, <)$ but false in $(\mathbb{Z}, <)$.
- **2.** Let $\vec{v_1}, ..., \vec{v_n} \in \mathbb{Q}^m$. Show that $\{\vec{v_1}, ..., \vec{v_n}\}$ is linearly independent over \mathbb{Q} if and only if it is linearly independent over \mathbb{R} .

HINT: Show that linear independence can be expressed by both universal and existential formulas.

- **3.** Determine whether the following are 0-definable; prove your answers unless the question allows guessing.
 - (a) The set \mathbb{N} in $(\mathbb{Z}, +, \cdot)$.
 - (b) The set of non-negative numbers in $(\mathbb{Q}, +, \cdot)$.
 - (c) The set of non-negative numbers in $(\mathbb{Q}, +)$.
 - (d) The function $\max(x, y)$ in $(\mathbb{R}, <)$.
 - (e) The function mean $(x, y) = \frac{x+y}{2}$ in $(\mathbb{R}, <)$.
 - (f) The element 2 in $(\mathbb{R}, +, \cdot)$.
 - (g) The set of torsion elements in the group $\mathbb{F}_2 \times \bigoplus_{n \geq 2} \mathbb{Z}/n\mathbb{Z}$, where \mathbb{F}_2 is the free group on 2 generators.

HINT: Commutating vs. noncommutating.

- (h) (Guess) The set of torsion elements in the group $\mathbb{Z}^2 \times \bigoplus_{n>2} \mathbb{Z}/n\mathbb{Z}$.
- (i) The function $n \mapsto n^7$ in $(\mathbb{N}, 0, S, +, \cdot)$.
- (j) (Guess) The function $(n, d) \mapsto n^d$ in $(\mathbb{N}, 0, S, +, \cdot)$, where by convention $0^d \mapsto 0$. HINT: Can you program this function?
- 4. (a) For $\sigma := (f)$, where f is a unary function symbol, find a σ -sentence, whose only models are infinite σ -structures.
 - (b) Let $\sigma_{\text{semigp}} := (\cdot)$, where \cdot is a binary function symbol. Find a satisfiable¹ sentence, whose only models are infinite groups under the \cdot operation.

CAUTION: The question isn't asking to find a one-sentence axiomatization for the class of infinite groups: the inclusion is only one way.

HINT: Use the idea of part (a).

 $^{^{1}}Satisfiable$ means it has a model.