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MATH 571: MODEL THEORY

PROBLEMS

1. Definability

1.1. Let A be an L-structure and P ⊆ A. Show that any automorphism h ∶ A ∼Ð→ A that fixes P
pointwise (i.e. for every p ∈ P , h(p) = p) must fix every P -definable set D ⊆ An setwise (i.e.
h(D) =D, where, as usual, h(d⃗) = (h(d1), ..., h(dn)) for d⃗ ∈D).

1.2. Determine whether the following are 0-definable. You may choose to do only 5 parts of this
exercise.
(a) The set N in (Z,0,+).
(b) The set N in (Z,+, ⋅).

Hint: You need a nontrivial fact from elementary number theory.
(c) The set of non-negative numbers in (Q,+, ⋅).
(d) The set πZ in (C,0,1,+, ⋅, exp), where exp ∶ C → C the usual exponentiation function

given by z ↦ ez.
(e) The set of positive numbers in (R,<).
(f) The function max(x, y) in (R,<).
(g) The function mean(x, y) = x+y

2 in (R,<).
(h) The element 2 in (R,+, ⋅).
(i) The relation d(x, y) = 2 in an undirected graph (with no loops) (Γ,E), where d(x, y)

denotes the edge distance function.
Hint: Use the previous problem to prove the negative answers.

1.3. Let Lgp
..= (⋅, ()−1,1) be the language of groups and by a group we mean a structure in this

language satisfying the usual group axioms.
(a) Is the set of torsion elements 0-definable in the direct sum G ..= Z/2Z⊕Z/3Z⊕Z/4Z⊕⋯?

What about G ..= Z?

(b) Prove that there is no Lgp-formula ϕ(x) such that for every group G, ϕ(x) defines the
set of all torsion elements of G.

1.4. Use the compactness theorem to show that the connectedness relation
P (x, y) ⇐⇒ x and y are connected

is not definable in any disconnected acyclic 2-regular1 (undirected) graph G ..= (V ;E), in
other words, a graph that consists of at least two disjoint bi-infinite paths.
Hint: Let ϕ(x, y, z⃗) be a hypothetical Lgr

..= (E)-formula such that for some parameters
p⃗ ⊆ V , ϕ(x, y, p⃗) defines the relation P (x, y) above. Let A be a connected component of G.
Use two new constant symbols and the Compactness theorem to obtain an extension Ḡ of
G containing (at least) two new connected components B,C such that ϕ holds between the

1A graph is k-regular if each vertex has exactly k neighbors.



elements of B and A, but fails between those of C and A. Get a contradiction by swapping
B and C.

2. Boolean algebras and Stone spaces

2.1. Let A be a Boolean algebra and let a, b range over its elements. Prove that
(a) a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a;

(b) a ∨ b = b⇔ a ∧ b = a;

(c) a ≤ b ..⇔ a ∨ b = b⇔ a ∧ b = a defines a partial order on A;

(d) a′ is the unique element b with a ∨ b = 1 and a ∧ b = 0;
Hint: Show that a′ ≤ b and a′ ≥ b.

2.2. Let A be a Boolean algebra and S ⊆ A be such that the meet (i.e. ⋀) of any finite subset
of S is not equal to 0. Prove that S can be extended to a proper filter, and hence to an
ultrafilter, of A.

2.3. Let A be a Boolean algebra, F a filter of A and a ∈ A. Carefully prove the following.
(a) F ∧ a ..= {b ∈ A ∶ b ≥ f ∩ a for some f ∈ F} is the filter generated by F .

(b) If a′ ∉ F then F ∧ a is a proper filter.

(c) F = ⋂{α ∈ St(A) ∶ α ⊇ F}.

(d) a↦ [a] is a Boolean algebra embedding of A into the Boolean algebra of clopen sets of
St(A).

For an algebra A and S ⊆ A, let ⟨S⟩alg (resp. ⟨S⟩lttc) denote the closure of S under the operations
of ∨, ()′ (resp. ∨,∧) and call it the algebra (resp. lattice) generated by S.

2.4. Write down explicitly what the set ⟨S⟩lttc is for any subset S of a given algebra A, i.e. figure
out the form of the elements of ⟨S⟩lttc in terms of those of S and ∨,∧.

For S ⊆ A and a ∈ A, say that S separates points across a if for any ultrafilters α ∈ [a] and
β ∉ [a], there is s ∈ S with s ∈ α and s ∉ β (equivalently, α ∈ [s] but β ∉ [s]). S is said to separate
points if it separates across every a ∈ A.

Theorem 2.5. Let A be a Boolean algebra, let S ⊆ A and a ∈ A. a ∈ ⟨S⟩lttc if and only if S
separates points across a.

In class, we proved the equivalence of the first two statements in the following.

Corollary 2.6. Let A be a Boolean algebra and let S ⊆ A. The following are equivalent.
(1) ⟨S⟩alg = A.
(2) S separates points.
(3) ⟨S⟩lttc = A.
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2.7. Prove Theorem 2.5 and conclude Corollary 2.6.
Hint for ⇐ of Theorem 2.5: It is enough to show that every point p ∈ [a] is contained
in [s] ⊆ [a] for some s ∈ S. To get such an s, try to separate p from every point of [a′].

3. Types

3.1. Let Σ be an L-theory and let ALx⃗(Σ) denote the algebra of all L-formulas modulo the
equivalence in Σ, i.e.

ALx⃗(Σ) ..= Formulas(L, x⃗)/ ∼Σ .

For an L-formula ϕ(x⃗), let [ϕ(x⃗)] ∼Σ denote its ∼Σ-equivalence class.
Also recall that for an L-formula ϕ(x⃗) and an L-structureM, we denote by [ϕ(x⃗)]M the

subset of M ∣x⃗∣ defined by ϕ(x⃗). Lastly, denote by Dx⃗(M) the collection of all definable (in
M) subsets of M ∣x⃗∣.
(a) For a model M ⊧ Σ, the map [ϕ(x⃗)]∼Σ ↦ [ϕ(x⃗)]M is a well-defined Boolean algebra

homomorphism ALx⃗(Σ) → Dx⃗(M).

(b) The map p(x⃗) ↦ {[ϕ(x⃗)]∼Σ ∶ ϕ(x⃗) ∈ p(x⃗)} is a homeomorphism Sx⃗(Σ) ∼Ð→ St(ALx⃗(Σ)).

3.2. Let Σ be an L-theory and, for an L-formula ϕ(x⃗), let [ϕ(x⃗)]S(Σ) denote the clopen subset
of the type space Sx⃗(Σ) defined by ϕ(x⃗), i.e. the collection of all x⃗-types containing ϕ(x⃗).
Similarly, for a partial type Φ(x⃗), put

[Φ(x⃗)]
S(Σ)

..= ⋂
ϕ(x⃗)∈Φ(x⃗)

[ϕ(x⃗)]S(Σ).

(a) Verify the equivalence of the following statements:
(i) [ϕ(x⃗)]S(Σ) ≠ ∅,

(ii) ϕ(x⃗) ≁Σ⊥, i.e. Σ ⊭ (ϕ(x⃗) ↔⊥),

(iii) ϕ(x⃗) is Σ-realizable, i.e. Σ ∪ {ϕ(x⃗)} is satisfiable (as an L(x⃗)-theory).

(b) Observe that [Φ(x⃗)]
S(Σ) is a closed subset of Sx⃗(Σ) and that every closed subset is of

this form.

(c) Prove that [Φ(x⃗)]
S(Σ) has empty interior if and only if Σ locally omits Φ(x⃗), that is:

for any Σ-realizable formula ψ(x⃗), there is ϕ(x⃗) ∈ Φ(x⃗) such that ψ(x⃗) ∩ ¬ϕ(x⃗).

3.3. In class we proved that if Σ locally omits a partial type Φ(x) then there is a model of Σ
that omits Φ(x). Modify this proof to turn it into a proof of the full version of the Omitting
Types theorem, i.e. for a countable collection {Φn(

Ð→xn)}n∈N of partial types locally omitted
by Σ.

4. Partial isomorphisms and elementary maps

4.1. Prove that the limit/union of any chain (Mi)i∈I of L-structures is a well-defined L-structure
extending each Mi.

4.2. Let N be an L-structure, M0,M1 ⊆ N and M ..=M0 ∩M1.
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(a) Prove that M is an underlying set of a substructure, which we denote byM. Thus, the
intersection of two substructures is a substructure.

(b) Construct your own example showing that even if M0,M1 ⪯ N , M need not be ele-
mentary.

(c) However, prove that if M0,M1 ⪯ N , then the identity map h ..= idM is a partial ele-
mentary map M0 ⇀M1 (with domain M).

(d) Prove that being an elementary substructure is transitive in every way:

(i) If M0 ⪯M1 ⪯ N then M0 ⪯ N ;

(ii) If M0 ⊆M1 ⪯ N and M0 ⪯ N then M0 ⪯M1.

4.3. (By Anton Bernshteyn) Let B = (B,E) be a countable undirected graph, each of whose
vertices have degree at most 1. Suppose further that B has infinitely many vertices of degree
0 and infinitely many of degree 1. Find a substructure A ⊆ B that is isomorphic to B and yet
is not an elementary substructure of B. For simplicity, you may assume that B is countable.

4.4. Let LS ..= (0, S) be a language, where 0 is a constant symbol and S a unary function symbol.
Let TS be the LS-theory consisting of the following axioms:
● Zero has no predecessor: ∀x(S(x) ≠ 0).
● The successor function is one-to-one: ∀x∀y(S(x) = S(y) → x = y).
● Any nonzero number is a successor of something: ∀x(x ≠ 0→ ∃y(x = S(y))).
● For all n ∈ N, there are no n-cycles: ∀x(Sn(x) ≠ x), where Sn stands for the n-fold

composition of S.

For anyM0,M1 ⊧ TS, determine exactly which partial isomorphisms f ∶ M0 ⇀M1 admit a
back-and-forth system F ∶M0 ⇋M1 containing f .

5. Classifying the models of a theory

5.1. Let Σ0,Σ1 be L-theories. Prove that if Σ0 complete and Σ0∪Σ1 is consistent, then Σ0 ⇒ Σ1,
i.e. Σ0 ⊧ ϕ, for every ϕ ∈ Σ1. Conclude that if both Σ0,Σ1 are complete and Σ0 ∪ Σ1 is
consistent, then Σ0 ≡ Σ1.

5.2. Let L be a finite language. Prove that the theory of a finite L-structure has exactly one
model (up to isomorphism).

5.3. Let C be a class (a set) of L-structures. Define the theory Th(C) and the asymptotic theory
Tha(C) of C as follows: for every L-sentence ϕ,

ϕ ∈ Th(C) ..⇔∀M ∈ C M⊧ ϕ,

ϕ ∈ Tha(C) ..⇔∀∞M ∈ C M⊧ ϕ,

where ∀∞ means “for all but finitely many”.

(a) Let C be an infinite class of finite structures that contains only finitely many structures
of cardinality n, for each n ∈ N. Prove that the models of Tha(C) are exactly the infinite
models of Th(C).
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(b) Let L ..= L∅ (the empty language) and suppose C contains arbitrarily large finite struc-
tures. What theories are Th(C) and Tha(C) equivalent to?

5.4. Let Lgph ∶= (E) (the language of graphs) and let C ..= {Gn}n≥2, where Gn is the undirected
chain of n vertices; more precisely Gn ∶= (Gn,EGn), where Gn ∶= {1,2, ..., n} and uEGnv ⇔
∣u − v∣ = 1, for u, v ∈ Gn.
(a) Exhibit a nontrivial Lgph-sentence from Th(C), i.e. a sentence that doesn’t follow from

the axioms of the first order logic or from axioms of undirected graphs with no loops2.

(b) List all infinite models of Th(C).

(c) List all finite models of Th(C).

5.5. Recall that we showed in class that DLO is ℵ0-categorical. Take a sequence fresh constant
symbols (ci)i∈N.
(a) Show that for every n ∈ N, the theory

DLOn = DLO ∪ {ci < ci+1 ∶ i < n}

is still ℵ0-categorical as a theory in the language (<,{ci ∶ i ≤ n}). Conclude that DLOn

is complete.

(b) Conclude that the theory

DLO∞ = ⋃
n∈N

DLOn

is complete as a theory in the language (<,{ci ∶ i ∈ N}).

(c) Yet, show that DLO∞ has exactly three countable models up to isomorphisms; in par-
ticular, DLO∞ is not ℵ0-categorical.

6. Quantifier elimination

First, we recall some criteria for q.e. proved or mentioned in class.

Theorem 6.1 (Q.e. via back-and-forth). Let Σ be an L-theory and suppose that for every q.f.
type q(x⃗) and any extensions p0(x⃗), p1(x⃗) ∈ SLx⃗ (Σ) of q(x⃗), there are modelsM0,M1 ⊧ Σ realizing
p0(x⃗) and p1(x⃗), respectively, by tuples a⃗ ∈M0, b⃗ ∈M1, and a back-and-forth system F ∶M0 ⇋M1
containing the map a⃗⇉ b⃗. Then, Σ admits q.e.

For an L-structure M and A ⊆ M , recall that L(A) denotes the expansion of the language L
with fresh constants, one for each element of A; we let M(A) denote the expansion of M to an
L(A)-structure, where the constants in A are interpreted by themselves.

For an L-structureM and A ⊆M , let ElDiagM(A) (resp. DiagM(A)) denote all (resp. quantifier
free) sentences ϕ in the language L(A) that are true about the elements of A, i.e. M(A) ⊧ ϕ. Call
the set ElDiagM(A) (resp. DiagM(A)) the elementary diagram (resp. diagram or q.f. diagram)
of A in M.

Note that for a finite tuple a⃗ ∈M , the diagram of a⃗ is exactly its q.f. type.
Finally, say that an L-theory Σ decides an L-sentence ϕ if either Σ ⊧ ϕ or Σ ⊧ ¬ϕ.
2In a graph, a loop is an edge from a vertex to itself.
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Theorem 6.2. For an L-theory Σ and an L-formula ϕ(x⃗), the following are equivalent:

(1) ϕ(x⃗) is Σ-equivalent to a q.f. L-formula ψ(x⃗).

(2) For every model M⊧ Σ and any a⃗ ∈M ∣x⃗∣, Σ ∪DiagM(a⃗) decides ϕ(a⃗).

(3) For every q.f. type q(x⃗) of Σ, Σ ∪ q(x⃗) decides ϕ(x⃗).

The last theorem allows for rephrasing q.e. in terms of completeness.

Corollary 6.3. For an L-theory Σ, the following are equivalent:

(1) Σ admits q.e.

(2) For every model M⊧ Σ and any a⃗ ∈M , Σ ∪DiagM(a⃗) is a complete L(a⃗)-theory.

(3) For every q.f. type q(x⃗) of Σ, Σ ∪ q(x⃗) is a complete L(x⃗)-theory.

6.4. Determine all q.f. 0-dimensional (i.e. no variables) types of ACF; more precisely, list all of
the elements of S0(ACF) and point out exactly which elements are isolated (as points in the
topological space S0(ACF)).

6.5. Prove Theorem 6.2 and conclude Corollary 6.3. Realize that one can use categoricity to
prove q.e.
Hint: Deduce Theorem 6.2 from Theorem 2.5.

6.6. Prove q.e. for the following theories. You may use any criterion for two of the theories, but
prove it by hand (syntactically) for one of them.
(a) DLO,

(b) the theory SUCC of the successor, that is: the axiomatization of Th(N,0, S) that we
defined in class,

(c) the theory VECF of vector spaces over a fixed field F .

6.7. Let K be an algebraically closed field and F ⊆ K a subfield. Prove that the continuous
injection Sx⃗(ACF/F ) → Spec(F [x⃗]) is surjective.
Hint: Given J ∈ Spec(F [x⃗]), one has to show that the unique candidate for its preimage is
actually a realizable type. Strong Nullstellensatz is what provides realizations of these kinds
of types, but it only applies to ideals of K[x⃗] and not F [x⃗]. Use without proof that J lifts
to a prime ideal of K[x⃗], i.e. there is J ′ ∈ Spec(K[x⃗]) such that J ′ ∩ F [x⃗] = J .

7. Model completeness

Definition 7.1. A theory Σ is called model complete if for any modelsM,N ⊧ Σ,M⊆N implies
M⪯N .

Theorem 7.2. For an L-theory TΣ, the following are equivalent:

(1) Σ is model-complete.
6



(2) For every model M⊧ Σ, Σ ∪DiagM(M) is a complete L(M)-theory.

(3) Every L-formula ϕ(x⃗) is Σ-equivalent to a universal3 formula.

(4) Every L-formula ϕ(x⃗) is Σ-equivalent to an existential3 formula.

7.3. Prove Theorem 7.2. Compare it with Corollary 6.3.
Hint: To prove (2)⇒(3) of Theorem 7.2, use (2)⇒(3) of Corollary 2.6.

7.4. Let Lgph
..= (E) be the language of graphs, i.e. E is a binary relation symbol.

(a) Write down an explicit axiomatization T for the class of undirected graphs with no
loops, whose connected components are bi-infinite chains, i.e. acyclic graphs with the
degree of each vertex being 2.

(b) Show that T is complete.

(c) Conclude yet again (for the last time, I promise) that the relation R(v, u) of being in
the same connected component is not 0-definable in any disconnected model of T .
Hint: Let M be such a model, so M⊧ ∃x∃y¬R(x, y), hence Z ⊧ ∃x∃y¬R(x, y), where
Z is the connected model. Therefore, Z ⊧ ∃x∃y[¬R(x, y) ∧ dist≤d(x, y)], for some d ∈ N.
But now M must satisfy the latter sentence too, which is a contradiction.

(d) Show that for anyM⊧ T and a, b ∈M , there is an automorphism g ofM with g(a) = b.

(e) For M⊧ T , exactly which subsets of M are 0-definable in M?

(f) Finally, prove that T is model-complete, but does not admit q.e.
Remark: You may assume that our first-order language always includes the 0-ary
relation symbols ⊺ and ⊥ for truth and falsehood, respectively, so Lgph not having a
constant symbol isn’t the reason why T doesn’t admit q.e.

8. Saturation

Theorem 8.1. Let L be a countable language and α a nonprincipal ultrafilter on N. The ultra-
product M∞ over α of any sequence (Mi)i∈N of L-structures is countably saturated.

8.2. Follow the steps below to prove Theorem 8.1.
(i) Fix a countable A ⊆ M∞ and argue that it is enough to prove that ⋂n∈NB(n) ≠ ∅ for

some countable FIP collection {B(n)}n∈N of A-definable subsets of M∞.

(ii) Show that each B(n) itself can be represented as an ultraproduct of sets defined by the
same formula in respective models Mi; more explicitly,

B(n) ..= [∏
i∈N
B
(n)
i ]

α

.

3A formula is called universal (resp. existential) if it is of the form ∀y⃗ψ(x⃗, y⃗) (resp. ∃y⃗ψ(x⃗, y⃗)), where ψ is a
q.f. formula.
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(This part is intentionally left somewhat vague and interpreting it is part of the ques-
tion.)

(iii) Prove that for each N ∈ N, we have (∀αi ∈ N) ⋂
n≤N

B
(n)
i ≠ ∅.

(iv) For each i ∈ N, let Ni denote the largest natural number ≤ i such that ⋂n≤Ni
B(n) ≠ ∅.

Use this to define the ith coordinate of the hypothetical point x ∈ ⋂n∈NB(n).

Theorem 8.3 (Blum’s q.e. criterion). An L-theory T admits q.e. if and only if for all models
M,N ⊧ T with N being ∣M ∣+-saturated, and for each substructure A ⊆M, every embedding A ↪ N
extends to an embedding M↪N .

8.4. Prove Theorem 8.3
Hint: For ⇒, enumerate M and build the embedding M ↪ N by transfinite induction.
For ⇐, it is enough to fix a q.f. formula ϕ(x⃗, y) and show that the formula ∃yϕ(x⃗, y) is
T -equivalent to a q.f. formula. Do this using Theorem 6.2.

8.5. Recall that an L-structure M is called saturated if it is ∣M ∣-saturated. Prove that any two
saturated elementarily equivalent equinumerous4 L-structures are isomorphic.

8.6. Show that if an L-structure M is κ-saturated, then all definable (with parameters) sets (in
all dimensions) are either finite or of cardinality at least κ.

9. Universal and prime models

9.1. Let L = (E), where E is a binary relation symbol.

(a) Define a theory T whose models are exactly the L-structures in which E is an equivalence
relation with exactly one equivalence class of size n, for each natural number n ≥ 1.

(b) How many countable models does T have (up to isomorphism)?

(c) How many models of cardinality ℵ1 does T have (up to isomorphism)?

(d) LetMω be the model of T that is countable and has infinitely many infinite equivalence
classes. Show that Mω is ℵ1-universal, i.e. for every other countable model N ⊧ T ,
N ↪eMω.
Hint: Use the proof of upward Löwenheim–Skolem to build an elementary extension of
N with the additional requirement of having infinitely many infinite equivalence classes.
Then, wake up, and realize that there is only one (up to isomorphism) such model.

(e) Conclude that T is complete.

(f) LetM0 be the smallest model of T , i.e. the unique model with no infinite classes; call it
the standard model. It embeds into any other model M by sending the n-sized class to
the n-sized class for each n ∈ N; there are infinitely many such embeddings (permuting
the elements of each n-sized class) and we call all of them standard. Show that any
standard embedding is elementary, thus, M0 is a prime model of T .

4Equinumerous means having the same cardinality.
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Hint: Use the very definition of elementarity and the completeness of T , exploiting the
fact that T uniquely determines the elements of the standard part.

(g) Show that for any nonstandard model M ⊧ T , there are infinitely many nonstandard
embeddings M0 ↪ M and none of them is elementary. (This is an example that not
every embedding of the prime model is elementary.) Conclude that T is not model
complete.

9.2. Let 2<N denote the set of all finite binary sequences (including the empty sequence ∅) and
for each s ∈ 2<N and i ∈ {0,1}, let s⌢i be the extension of s obtained by appending the symbol
i to the end of s.

Let L = (Ps)s∈2<N , where each Ps is a unary predicate. Let the theory TREE comprise of
the following axioms and axiom schemas:
(i) ∀xP∅(x)
(ii) ∃xPs(x), for each s ∈ 2<N
(iii) ∀(Ps⌢0(x) ∨ Ps⌢1(x)) ↔ Ps(x), for each s ∈ 2<N
(iv) ∀x¬(Ps⌢0(x) ∧ Ps⌢1(x)), for each s ∈ 2<N.

Below, we view every L-structure M as a topological space with the topology generated by
the q.f. 0-definable sets.
Prove the following:
(a) For every L-structure M, M ⊧ TREE if and only if there is a continuous, open,

topologically-injective5 map iM ∶ M → 2N whose image is dense in 2N.

(b) For any cardinal κ ≥ 1, show that a model M⊧ TREE is κ-saturated if and only if for
every σ ∈ 2N, ∣i−1

M(σ)∣ ≥ κ.

(c) TREE admits q.e.6 Conclude that it is complete.
Hint: One can use Blum’s criterion here. If you are using any other criterion, make
sure the models you deal with are sufficiently saturated (pass to elementary extensions
if needed).

(d) Explicitly describe the one-dimensional type space Sx(TREE); what familiar topological
space is it homeomorphic to? Conclude that TREE is not small, has no isolated types
and no prime model.

(e) For any modelM⊧ TREE and A ⊆M , list all possible 1-types ofM over A. Conclude,
using q.e., that the converse of (b) holds.

(f) Conclude that a model of TREE is ℵ0-saturated if and only it it is ℵ1-universal.

10. ω-stability and total transcendence

10.1. Let L and T be as in Problem 9.1..

5For a topological space X and a set Y , call a map f ∶ X → Y topologically-injective if the preimage f−1(y) of
every point y ∈ Y is not separated by open sets, i.e. for every open U ⊆X, either f−1(y) ⊆ U or f−1(y) ∩U = ∅.

6Recall that the 0-ary relation symbols ⊺ and ⊥ for truth and falsehood are always assumed to be included in
our first-order language.
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(a) (Thanks to Elliot Kaplan) Add to the language L a unary predicate Pn for each n ∈ N
and denote the new language by L′. Let T ′ be the L′-theory consisting of T together
with the L′-sentences ϕn, for all n ∈ N, where ϕn says that for every x, Pn(x) holds if
and only if the E-class of x has exactly n elements. Show that T ′ admits quantifier
elimination.

(b) Using the previous part, describe Sx(T ), as well as Sx(M/A) for any model M ⊧ T
and countable subset A ⊆M . Conclude that T is ω-stable, and thus an example of an
ω-stable theory that is not κ-categorical for any infinite cardinal κ.

10.2. Let L be a (not necessarily countable) language. For an L-theory T and a sublanguage L0,
let T ⇂L0 denote its L0-reduct, i.e. T ⇂L0 is obtained from T by removing all sentences from
T that are not L0-sentences. Prove that a consistent and complete L-theory T is totally
transcendental if and only if T ⇂L0 is ω-stable for all countable L0 ⊆ L.

10.3. Let κ be an infinite cardinal and L be a language of size possibly larger than κ. Let T
be a κ-stable L-theory and let M⊧ T with A ⊆M of cardinality κ. Show that M has an
elementary substructure of cardinality κ that contains A.
Remark: When ∣L∣ ≤ κ, this statement follows by the downward Löwenheim–Skolem
theorem. However, for ∣L∣ > κ, one needs an additional assumption of κ-stability.

10.4. Let T be an L-theory.

(a) Let ρ ∶ SL(x⃗,y⃗)(T ) → SLx⃗ (T ) be the natural restriction/projection map defined by

p↦ {ϕ ∶ ϕ ∈ p and ϕ(x⃗) makes sense},

where “ϕ(x⃗) makes sense” means that all free variables of ϕ are among x⃗. Prove that
ρ is surjective, continuous, and open.

(b) Let M be an L-structure, B ⊆ M , x⃗ a vector of variables, and a⃗ ∈ M ∣x⃗∣. Letting
ρ ∶ SL(x⃗,y⃗)(M/B) → SLx⃗ (M/B) be as in (a), show that the preimage of tpM(a⃗/B) under
this map is canonically homeomorphic to Sy⃗(M/a⃗B).

(c) Using (b), prove that for an infinite cardinal κ, T is κ-stable if and only if it is κ-stable
for 1-types, i.e. for every M⊧ T and A ⊆ κ,

∣A∣ ≤ κ⇒ ∣S1(M/A)∣ ≤ κ.

10.5. Let T be an L-theory and κ an infinite cardinal. Prove that if T is κ-stable, then, for all
regular λ ≤ κ, there is a λ-saturated model of T of cardinality κ.

10.6. Show that any theory with a definable infinite linear ordering (e.g. DLO) are not κ-stable
for any infinite cardinal κ. Conclude that DLO, Th(N;+, ⋅,0,1) and Th(R;+,−, ⋅,0,1) are
not κ-stable.

10.7. Prove that if T is a totally transcendental L-theory, then for any model M ⊧ T and any
subset A ⊆ M , the space S1(M/A) doesn’t contain a nonempty clopen perfect subset.
Conclude that the isolated types are dense in S1(M/A).
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11. Indiscernibles

11.1. A sequence of elements in (Q;<) is indiscernible if and only if it is either constant, strictly
increasing, or strictly decreasing.

Definition 11.2. A Skolemization of an L-theory T is a theory TS in an extended language LS ⊇ L
that
(i) admits q.e.,
(ii) is equivalent to a universal7 LS-theory,
(iii) every model M of T expands to a model of TS,
(iv) ∣LS ∣ ≤ max {∣L∣,ℵ0}.

11.3. Prove that every L-theory T admits a Skolemization.
Hint: Extend the language in countably-many iterations, by adding Skolem functions each
time, as it is done in the proof of Downward Löwenheim–Skolem theorem, which can be
found in my logic notes online (Theorem 1.44). One needs to
● add to the language a k-ary function symbol fψ,k for every k ≥ 0 and every q.f. formula
ψ(x⃗, y) with ∣x⃗∣ = k,

● add
∀x⃗(∃yψ(x⃗, y) → ψ(x⃗, fψ,k(x⃗)))

to the theory.
The latter may not look like a universal sentence, but it becomes one once → is converted
to ∨.

12. Prime extensions

Definition 12.1. Let M be an L-structure and A ⊆M .
● Call M a prime extension over A if, for every L-structure N , every elementary embedding
A↪e N (i.e. every partial elementary mapM⇀e N with domain A) extends to an elementary
embedding M↪e N .

● Call B ⊆ M constructible over A if B admits an ordinal enumeration (i.e. a well-ordering)
B = (bα)α<λ, for some ordinal λ, such that each bα is atomic8 over A∪Bα, where Bα

..= {bγ}γ<α.

12.2. Prove that if an L-structure M is constructible over A ⊆M , then M is prime over A.

12.3. Prove that if an L-theory T is totally transcendental, then in any model M ⊧ T , every
subset A ⊆M has a constructible prime extension M0 ⪯M.

12.4. (Transitivity of being atomic) Let M be an L-structure.
(a) For any a, b ∈M , tp(a, b) is isolated if and only if tp(a/b) and tp(b) are isolated.

(b) Conclude that constructible extensions are atomic; more precisely, if B ⊆ M is con-
structible over A ⊆M , then any b ∈ B is atomic8 over A.

7A theory is called universal if it consists of only universal3 sentences.
8For a structureM, an element b ∈M is said to be atomic over a set P ⊆M if tp(b/P ) is isolated in S1(M/P ).
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