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One of the main objects of study in ergodic theory is a probability-measure-preserving (p-
m-p) dynamical system of the form �X,µ,T �, where �X,µ� is a standard probability space
and T a p-m-p automorphism of �X,µ�, or more generally, �X,µ,Γ, α�, where α is a p-m-p
action of a countable group Γ on �X,µ�. Naturally, we would like to classify these dynamical
systems up to suitable notions of equivalence, such as isomorphism (conjugacy), unitary
(spectral) equivalence, and orbit equivalence1, by attaching invariants to these systems, such
as entropy2, spectral measures, cost. Here are some major positive results in this direction:

(1) �Ornstien 1970� Two Bernoulli shifts �X,µ,T � and �Y, ν, S� are isomorphic if and only if
they have equal entropy. �Halmos–von Neumann 1942� Two dynamical systems �X,µ,T �
and �Y, ν, S� with discrete spectrum are isomorphic if and only if they are unitarily
equivalent if and only if their sets of eigenvalues are equal.

(2) �Dye 1963; Ornstein–Weiss 1980� Any two probability p-m-p actions of (maybe different)
amenable groups are orbit equivalent.

Note that (1) classifies only special kinds of automorphisms up to isomorphism or unitary
equivalence, leaving the general classification problem widely open. What if such classifica-
tion was impossible? How would we prove this? This is where descriptive set theory enters
the picture, providing a suitable framework and tools for proving non-classification results
for equivalence relations.

The point of view taken here is global : we look at all p-m-p systems at once, i.e. we study
the group Aut�X,µ� of all p-m-p automorphisms, as well as the space Act�Γ,X,µ� of all
p-m-p actions of Γ on �X,µ�. Here are some striking victories of this new theory:

(1�) �Hjorth 2001; Foreman–Weiss 2004� Neither isomorphism, nor unitary equivalence, ad-
mits any “reasonable” classification even if we restrict to weakly mixing automorphisms.

(2�) �Epstein–Ioana–Kechris–Tsankov 2008� If Γ is a non-amenable countable group, then it
admits continuum-many non-orbit-equivalent free p-m-p actions on �X,µ�. Moreover,
orbit equivalence on Act�Γ,X,µ� does not admit any “reasonable” classification.

The goal of these notes is to cover or sketch most of what is advertised above, as well as
the basics of the theory of costs developed by Gaboriau and the rigidity phenomenon. Our
main references are [Kec10] and [KM04].

1For an action α � Γ¸ �X,µ�, let Eα be the induced orbit equivalence relation on X. Actions α � Γ¸ �X,µ�
and β � ∆¸ �Y, ν� of countable groups Γ,∆ are called orbit equivalent if Eα and Eβ are measure-isomorphic,
i.e. there is a measure-isomorphism T � �X,µ� �

Ð� �Y, ν� such that xEαy� T �x�EβT �y�, for µ-a.e. x, y >X.
2The entropy of a system �X,µ,T � is a real number designed to measure its chaoticity.
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Part 1. The group of measure-preserving
automorphisms

1. Topologies and representations of Aut�µ�
Throughout this section, let �X,µ� be a standard Borel space equipped with a non-atomic

Borel probability measure µ. By Theorem 7.7 any such space is isomorphic to ��0,1�, λ�.
1.A. Measure-preserving automorphisms. For measurable maps T,T � � �X,µ�� �X,µ�,
we write T �µ T � if they differ only on a µ-null set. We denote by Aut�X,µ� the set of all
bi-measurable, measure preserving automorphisms of X up to �µ, i.e. we identify two such
automorphisms T,T � if T �µ T �. We denote the �µ-equivalence class of T by �T �µ or simply
by �T �; below, we abuse the notation even further and just denote it by T as we normally
do in analysis for functions in Lp spaces.

Lemma 1.1 (Replacing measurable with Borel). For every �T � > Aut�X,µ� there is a Borel
automorphism T � of X with T �µ T �.

Proof. Let �Un�n be a countable basis for X. So, for every n the set T �1�Un� is measurable.
Let Bn be a Borel set with Bn �µ T �1�Un� and let X � � �nBn. Notice that X � is Borel and
that X �µ X �. �

Alternative proof. Let ΦT � MALGµ � MALGµ be given by ΦT ��A�� � �T �1�A�� and using
Corollary 7.14, let T � be a Borel automorphism that induces ΦT . �

1.2. As elements of Aut�MALGµ, µ�. Recall from Subsection 7.F that we can view each�T � > Aut�X,µ� as an element of Aut�MALGµ�, the group of all σ-automorphisms of
MALGµ, by �T �( ΦT , where ΦT ��A�� � �T �1�A�� for A > MEASµ. Moreover, Corollary 7.14
allows us to identify Aut�X,µ� with the subgroup Aut�MALGµ, µ� of Aut�MALGµ� of µ-
preserving σ-automorphisms, i.e. µ�Φ��A��� � µ��A��. Thus, we simply write Aut�µ� for
Aut�X,µ�.
1.B. The weak topology on Aut�µ�. In what follows, we will study the pointwise conver-
gence topology on Aut�µ�, also known as the weak topology on Aut�µ�. Recall the metric
dµ on MALGµ given by dµ��A�, �B�� � µ�A Q B�. We equip Aut�MALGµ, dµ� with the
pointwise convergence topology, where the points are the elements of MALGµ, i.e. it is the
smallest topology that makes all maps T � T �A� continuous for every A > MALGµ.

1.3. Basis and convergence. A basis of this topology consists of finite intersections of sets
of the form

BA�S, r� � �T > Aut�MALGµ, dµ� � dµ�T �A�, S�A�� @ r� ,
where A > MALGµ, S > Aut�MALGµ, dµ� and r > �0,1�. In this topology, we have that
Tn � T (we also write Tn �w T ) if and only if Tn�A� � T �A� for every A > MALGµ.
Moreover, it suffices to check that Tn�A�� T �A� for a dense subset of A’s in MALGµ.
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1.4. As a topological group. One important fact about the weak topology is that it makes
Aut�MALGµ, dµ� a topological group, i.e. composition Aut�µ� � Aut�µ� � Aut�µ� and
inversion Aut�µ� � Aut�µ� maps are continuous in this topology; indeed, let Tn �w T
and Sn �w S. Fix A > MALGµ and pick ε A 0. Chose n > N large enough so that both

dµ�Tn�A�, T �A�� @ ε~2 and dµ�Sn X T �A�, S X T �A�� @ ε~2. Using the triangle inequality, we

get that dµ�Sn XTn�A�, S XT �A�� @ ε. Moreover, since Tn �w T , we have that Tn XT �1�A��
T X T �1�A� � A. So,

dµ�T �1
n �A�, T �1�A�� � dµ�Tn X T �1

n �A�, Tn X T �1�A�� � dµ�A,Tn X T �1�A��� 0.

1.5. Compatible metrics. Let �An�n be a dense subset of �MALGµ, dµ�. The weak topology
is induced by the following metric:

δw�T,S� ��Q
n

2�ndµ�T �An�, S�An��.
Note that δw is a left invariant metric, i.e. δw�S X T1, S X T2� � δw�T1, T2�.

However, δw is not a complete metric: Given a δw-Cauchy sequence �Tn�n, one can define
its limit by T �A� �� limn Tn�A�. This would indeed define a one-to-one measurable endo-
morphism of �MALGµ, µ�, but it may not be bijective. To avoid this, we would like �T �1

n �n
to also δw-Cauchy. Hence, we switch to an equivalent metric, which would have the property
that if �Tn�n is Cauchy, so is �T �1

n �n.
Thus, we define a metric δw on Aut�MALGµ, dµ� as follows:

δw�T,S� �� δw�T,S� � δw�T �1, S�1�.
To see that this metric is complete let �Tn�n be a δw-Cauchy sequence and notice that �T �1

n �
is also δw-Cauchy. Define T,S � MALGµ � MALGµ by T �A� � limTn�A� and S�A� �
limT �1

n �A�. As an exercise, check that Tn �w T , T �1
n �w S, S X T � T X S � idMALGµ and

therefore both T,S are indeed elements of Aut�µ�.
1.6. As a closed subgroup of Iso�MALGµ, dµ�. For sets A,B > MALGµ, we often write A Ù B
to mean that A and B are disjoint (mod NULLµ).

Lemma 1.7. The topological group Aut�µ� is a closed subgroup of Iso�MALGµ, dµ�. In fact,
it is the group of all T > Iso�MALGµ, dµ� with T �g� � g.

Proof. We use the identification Aut�µ� � Aut�MALGµ, µ�. For a µ-preserving σ-automorphism
T > Aut�MALGµ, µ�, we check that it preserves the metric dµ; indeed, for A,B > MALGµ,

dµ�T �A�, T �B�� � µ�T �A�Q T �B�� � µ�T �AQB�� � µ�AQB� � dµ�A,B�.
To check the converse, fix T > Iso�MALGµ, dµ� with T �g� � g. We need to check that T is

a σ-automorphism of MALGµ and it preserves µ. The latter is immediate: for A > MALGµ,

µ�T �A�� � µ�T �A�Qg� � dµ�T �A�,g� � dµ�T �A�, T �g�� � dµ�A,g� � µ�A�.
As sets A,B > MALGµ are disjoint if and only dµ�A,B� � µ�A��µ�B�, T maps disjoint sets
to disjoint sets. Applying this to A,�A and using that T preserves µ, we see that T preserves
complements, and thus also the subset relation b because A b B� A Ù ��B�. To see that T
preserves (finite) joint -, notice that since it preserves b, we have that T �A�, T �B� b T �A-B�
and therefore

T �A� - T �B� b T �A -B�. ���
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Applying T �1 to both sides of this, we get

T �1�T �A� - T �B�� b A -B. ����
Applying ��� to A� � T �A�, B� � T �B� and T � � T �1 and using ����, we get

T �A -B� � T �1�T �A�� - T �1�T �B�� b T �1�T �A� - T �B�� b A -B.

So A -B � T �1�T �A� - T �B��, and therefore T �A -B� � T �A� - T �B�.
Finally, because T is dµ-continuous and �i@nAi �dµ �i>NAi as n�ª, we get that T also

preserves countable joint. �

This, together with Proposition 4.6, gives:

Corollary 1.8. The group Aut�µ� with the weak topology is a Polish group.

1.C. The unitary group of H � L2�X,µ�. Consider the Hilbert space H �  L2�X,µ�. Let
B�H� be the space of all bounded linear operators L � H � H and let U�H� b B�H� be
the the group of all unitary operators on H, i.e., all U > B�H� that preserve the norm Y � Y2

(or equivalently, using the parallelogram equality, the inner product). We now recall various
topologies on U�H�.
1.9. The operator topology. Consider the topology τop on B�H� induced by the operator
norm

YLYop �� sup
YhY2�1

YL�h�Y2.

Restricting this topology to U�H� we get the operator topology on U�H�. This topology
admits a metric, namely, the one induced by the norm on B�H�, and it is easy to see that
this metric is a complete metric on U�H�. However, �U�H�, τop� is not separable. To see
that let �en�n be an orthonormal basis and notice that distinct permutations of this basis

give distinct unitaries which are pairwise
º

2 apart in the norm metric.

1.10. The strong and weak topologies. The strong topology on B�H� is the one generated
by the family of maps L ( L�h�, where h > H, and H is endowed with the norm topology.
Therefore,

Ln �s L 
� ¦h >H Ln�h��H L�h�.
The weak topology on B�H� is the one generated by the family of maps L( L�h�, where

h > H, and H is endowed with the weak topology. In other words, The weak topology on
B�H� is the one generated by the family of maps L( `L�h�, ge, where h, g >H. Therefore,

Ln �w L 
� ¦h, g >H `Ln�h�, ge� `L�h�, ge.
It is clear that the strong topology is finer (not coarser) than the weak topology. However,

we have:

Proposition 1.11. On U�H�, the weak and strong topologies coincide.
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Proof. We need to prove that weak convergence implies strong convergence. For that assume
that Un �w U and fix h >H. We have that

YU�h� �Un�h�Y2 � `U�h� �Un�h�, U�h� �Un�h�e
� YU�h�Y2

� YUn�h�Y2
� 2`Un�h�, U�h�e

�Un, U preserve Y � Y� � YhY2
� YhY2

� 2`Un�h�, U�h�e
�weak convergence� � YhY2

� YhY2
� 2`U�h�, U�h�e

�U preserves `�, �e� � YhY2
� YhY2

� 2`h,he � 0.

�

1.D. Koopman representation. For every T > Aut�µ� we associate UT > U�H� by UTf �
f X T �1, for f >H. Notice that indeed each UT as above is unitary since

YUTfY2 � S
X
�f X T �1�x��2

dµ�x�
�T preserves µ, change of variable x( T �x�� � S

X
Sf�x�S2dµ�x� � YfY2,

and UT is invertible with U�1
T � UT�1 .

Observe now that the map T � UT is a topological group embedding from Aut�µ� with the
weak (� pointwise convergence) topology to U�H� with the strong (� pointwise convergence
= weak) topology. This map is called the Koopman representation.

Proposition 1.12. The image of Aut�µ� under the Koopman representation is exactly the
set of all multiplicative unitary operators, i.e. all U > U�H� satisfying U�f � g� � U�f� �U�g�
for every f, g >H.

Proof. Clearly, for each T > Aut�µ�, we have that

UT �f � g� � �f � g� X T �1 � �f X T �1� � �g X T �1� � UT �f� �UT �g�.
Now let U > U�H� be multiplicative. Then for every A > MALGµ,

U�1A� � U�1A � 1A� � U�1A� �U�1A�,
so U�1A� � 1B for some B > MALGµ. Moreover, since U preserves the norm, we have that
µ�A� � µ�B�. Now define TU by TU�A� �� B where U�1A� � 1B. Notice that TU respects
intersections since U�1A9B� � U�1A � 1B� � U�1A� � U�1B� � 1A� � 1B� � 1A�9B� . Since T is
measure-preserving and respects intersections, it also respects complements. Finally, the
continuity of U implies that T also respects countable intersections. �

We also have the following alternative characterization, whose proof is left as an exercise.

Proposition 1.13. The image of Aut�µ� under the Koopman representation is exactly the
set of all positive operators (i.e. f C 0� U�f� C 0) that fix 1X .

Now let C � 1X be the set of all constant functions in H and let

L2
0�X,µ� � �C � 1X�� � �f > L2�X,µ� � S fdµ � 0  .

Putting U0
T �� UT CL2

0�X,µ�, we see that T ( U0
T is an embedding of Aut�µ� into U�L2

0�X,µ��.
We record here the following fact and refer to [Gla03, 5.14] for a proof.
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Theorem 1.14. The representation Aut�µ� 0 U�L2
0�X,µ�� is irreducible, i.e. the action

Aut�µ�¸ L2
0�X,µ� does not have non-trivial invariant subspaces.

1.E. The uniform topology on Aut�µ�. For S,T > Aut�µ� let

δ�u�S,T � � sup�dµ�T �A�, S�A�� � A > MALGµ� .
Notice that δ�u is a 2-sided invariant metric on Aut�µ�. Hence,

δ�u�S,T � � δ�u�T �1S, idMALGµ� � δ�u�T �1, S�1�.
As a consequence, δ�u is a complete metric since �Tn�n being δ�u-Cauchy implies that �T �1

n �n
is also δ�u-Cauchy, so letting T,S be the obvious guesses for limits of �Tn�n and �T �1

n �n (as

done in the proof of the completeness of δw), we see that indeed T �1 � S, so T > Aut�µ�.
The topology τu on Aut�µ� induced by δ�u is called the uniform topology of Aut�µ�.

Sometimes, it is more convenient to work with the following metric, which, as shown
below, is equivalent to δ�u. For S,T > Aut�µ�, let D�S,T � � �x >X � S�x� x T �x��. Let also

δu�S,T � � µ�D�S,T ��.
We will now work towards establishing the following relation between these two “uniform”
metrics:

2

3
δu B δ

�

u B δu.

Lemma 1.15. δ�u B δu.

Proof. Let A > MALGµ, BS � S�A� � T �A� and BT � T �A� � S�A�. Notice that if C �
T �1�BS 8BT � then C `D�S,T � and therefore

dµ�S�A�, T �A�� � µ�BS 8BT � � µ�C� B µ�D�S,T �� � δu�S,T �.
�

Lemma 1.16. For any distinct S,T > Aut�µ�, there is a µ-positive A > MALGµ with S�A� Ù
T �A�.
Proof. Take 0 @ ε @ δu�S,T � and a subset X � b X with µ�X �� A 1 � ε such that SCX� and
T CX� are continuous. Notice that X � 9D�S,T � x g. Fix a countable open basis �Un�n of
X and note that by the continuity of S,T , for every x > X � 9D�S,T � there is nx > N with
x > Unx and S�Unx 9X �� Ù T �Unx 9X ��. Since the family �Unx � x >X � 9D�S,T �� covers
X � 9D�S,T � and the latter is µ-positive, there is some nx such that X � 9Unx is µ-positive.
It is clear now that A �� Unx 9X

� is as desired. �

Lemma 1.17. Any nonempty F b MALGµ that is closed under countable increasing unions
has a b-maximal element.

Proof. We recursively construct an increasing sequence An > F as follows. Take arbitrary
A0 > F . Given An, take An�1 c An with

µ�An�1 �An� C 1

2
sup�µ�B �An� � B > F� .

By the hypothesis on F , A �� �nAn > F and it is straightforward to check that A is b-
maximal. �

Lemma 1.18. For any distinct S,T > Aut�µ�, there is A > MALGµ�X,µ� with S�A� Ù T �A�
and µ�A� C 1

3δu�S,T �.
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Proof. Let F be the set of all A > MALGµ�X,µ� with S�A� Ù T �A� and note that g > F
and F is closed under countable increasing unions. Let A be an b-maximal element of F ,
which exists by Lemma 1.17. We claim that µ�A� C 1

3δu�S,T �. Suppose not. Then, for the
set

D�
��D�S,T � � �A 8 �S�1

X T ��A� 8 �T �1
X S��A��

we have µ�D�� C µ�D�S,T ���3µ�A� A 0. By Lemma 1.16, we now get B `D� with µ�B� A 0
and S�B� Ù T �B�. Note that the sets S�B�, T �B�, T �A�, S�A� are pairwise disjoint, and
therefore S�A 8B� Ù T �A 8B�, contradicting the b-maximality of A. �

Remark 1.19. The 1
3 in the above lemma is sharp: let S � id�0,1� and let T � �0,1�� �0,1� be

given by x( x� 1~3 �mod 1�. Then δu�S,T � � 1 and we leave it as an exercise to check that
for any A b �0,1� with λ�A� A 1~3, A and T �A� have λ-positive intersection.

Lemmas 1.15 and 1.18 together imply:

Corollary 1.20. The metrics δ�u and δu are equivalent. In fact,

2

3
δu B δ

�

u B δu.

Proof. We only need to show that first inequality, so let S,T > Aut�µ� and let A > MALGµ

be a set given by Lemma 1.18, i.e. S�A� Ù T �A� and µ�A� C δu�S,T �. Then

δ�u�S,T � C dµ�S�A�, T �A�� � µ�S�A�� � µ�T �A�� � 2µ�A� C 2

3
δu�S,T �.

�

Corollary 1.21. The uniform topology on Aut�µ� is not separable.

Proof. Let �X,µ� be ��0,1�, λ� and let F � �Tα � α > �0,1�� b Aut�µ� with Tα�x� � x �
α �mod 1�. Then F has cardinality continuum, yet for distinct α,β > �0,1�, δu�Tα, Tβ� �
1. �

Proposition 1.22. The closed balls in Aut�µ� with respect to either of the metrics δu and
δ�u are closed in the weak topology.

Proof. For δ�u, note that T > Bδ�u�S, r� 
� ¦A > MALGµ dµ�S�A�, T �A�� B r. The proof
for δu is slightly more involved and we will omit it here. �

Remark 1.23. Viewing Aut�µ� inside U�H� via the Koopman representation, we could endow
Aut�µ� with the operator norm topology inherited from U�H�. However this topology is
not useful as it is actually the discrete topology. Indeed, it is enough to show that for every
idMALGµ x T > Aut�µ�, YUT �IY C 1. Using Lemma 1.16, get A > MALGµ�X,µ� with µ�A� A 0
and T �A� Ù A. Then, putting f �� 1»

µ�a�1A so YfY2 � 1, we compute that YUT �f� � fY2 � 1,

so YUT � IY C 1.

2. Dense and generic families in Aut�µ�
For T,S > Aut�µ� we have by definition that �X,µ,T � � �X,µ,S� if and only if there is a

measurable isomorphism ϕ � �X,µ� � �X,µ� such that ϕ X T � S X ϕ or else ϕ X T X ϕ�1 � S.
In other words � in Aut�µ� is just the conjugacy relation on Aut�µ�. Also, viewing Aut�µ�
as a subgroup of U�L2�X,µ�� we have a coarser equivalence relation �U on Aut�µ� which



10

we call unitary equivalence. This is given by the conjugacy relation on U�L2�X,µ��, i.e.
T �U S if and only if there is U > U�L2�X,µ�� such that U XT XU�1 � S. (Here we need that
Aut�µ� is normal subgroup of U�H� in the Koopman representation)

In the next subsections we will develop the tools that we need in order to prove that the
conjugacy relation and the unitary equivalence on Aut�µ� are non-smooth. Since � is finer
than �U then by Theorem 8.26 and Corollary 11.8 this amounts in showing that:

Y conjugacy classes are dense in Aut�µ� (in the weak topology), and
Y unitary classes are meager.

Again, without the loss of generality it suffices to prove this in the case where X � 2N and
µ is the coin flip measure, i.e. the unique regular measure on 2N for which µ�Ns� � 2�SsS for
every s > 2@N.

2.A. Dyadic permutations. For every n > N we denote by Σ�2n� the group of all permu-
tations on the set 2n of all binary sequences s of length n. For every π > Σ�2n� and s > 2n

let Tπ � 2N � 2N be defined by s�x ( π�s��x. All such Tπ are called dyadic permutations of
length n. We call Tπ a cyclic permutation if π is cyclic. A dyadic interval of rank n is some
Ns with SsS � n. A dyadic set of rank n is a union of dyadic intervals of rank n. The following
proposition follows directly from the definition of the coin-flip measure.

Proposition 2.1. The family of dyadic sets is dense in MALGµ.

For the proof of Theorem 2.3 we first need a lemma.

Lemma 2.2. The set of dyadic permutations is dense in Aut�µ� in the weak topology.

Proof. (to be made more precise)
Recall that a basis of open sets of Aut�µ� consists of the sets of the form

B�S,A1, . . . ,Ak, r� �� �T > Aut�µ� � ¦ i B k dµ �T �Ai�, S�Ai�� @ r�
By replacing A1, . . . ,Ak above by the atoms of the finite Boolean algebra they generate, we

can assume without the loss of generality that A1, . . . ,Ak form a partition of 2N. Notice now
that we have two finer partitions �Ai 9 S�1�Aj� � 1 B i, j B k� and �S�Ai� 9Aj � 1 B i, j B k�
of 2N. Using 2.1 we can find dyadic sets Uij and Vij with 1 B i, j B k so that

(1) µ�Uij� � µ�Vij�;
(2) Uij is “dµ-close” to Ai 9 S�1�Aj�;
(3) Vij is “dµ-close” to Ai 9 S�1�Aj�;
(4) Uij 9Ui�j� � g if i x i� or j x j�;
(5) Vij 9 Vi�j� � g if i x i� or j x j� and
(6) �ij Uij and �ij Vij are “dµ-close” to X.

All the properties above can be fulfilled simultaneously accumulating an total error within
the r-room that we have. Since we used only finitely many dyadic sets, there is a number
n > N so that all Uij’s and Vij’s as well well as 2N��ij Uij and 2N��ij Vij are all dyadic sets of
rank n. Let now Tπ to be any dyadic permutation with π > Σ�2n� so that Tπ�Uij� � Vij. �

Theorem 2.3. The set of cyclic dyadic permutations is dense in Aut�µ� in the weak topology.
In fact in every weakly open set U in Aut�µ� we can find a cyclic dyadic permutation of rank
n for all but finitely many n > N.
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Proof. Let U be a weakly open subset of Aut�µ�. By Lemma 2.2 and Proposition 2.1 we can
assume that

U � B�S,A1, . . . ,Ak, ε� �� �T > Aut�µ� � ¦ i B k dµ �T �Ai�, S�Ai�� @ ε�
where A1, . . . ,Ak forms a dyadic partition of 2N and S is a dyadic permutation of rank

say m. Actually, we can assume without the loss of generality that the sets A1, . . . ,Ak are
exactly the partition �Ns � s > 2m� where m is the rank of S. this should be written as a
corollary of Lemma 2.2

So, S � Tπ for some π > Σ�2m� where in general, π is a product γ1 � . . . �γk of disjoint dyadic
cycles γi � �si1, . . . , sili� with silj > 2m for every j. Let n0 be such so that n0 Am and 2�n0 @ ε

k .

We proceed as follows. Every s > 2m appears in a unique position in the expression of π
below:

π �

γ1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ�s1
1, . . . , s

1
l1
� �

γ2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ�s2
1, . . . , s

2
l2
� � . . .

γk³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
��sk1, . . . , sklk�

Let any n A n0 and set p � 2n�m. Let also t1, t2, . . . , tp be the unique enumeration of all
t > 2n�m that respects the lexicographic order. Notice that for every s > 2m and every t from
the list above s�t belongs to 2n and moreover the collection of all s�t partitions 2n. Finally
notice that for every s�t as above we have µ�Ns�t� � 2�n @ 2�n0 @ ε

k . We define σ > Σ�2n� as
follows:

Y for any t > �t1, . . . , tp� and if s is not any of the terminal points in the above cycles
i.e, s ~> �s1

l1
, s2
l2
, . . . , sklk�, then set σ�s�t� � π�s��t;

Y for t � ti x tp and s being some of the terminal points in the above cycles i.e, s >�s1
l1
, s2
l2
, . . . , sklk�, set σ�s�ti� � π�s��ti�1;

Y finally if t � tp and s is some of the terminal points in the above cycles i.e, s � sili for

some i > �1, . . . , k�, then set σ�sili�tp� � si�1
1

�t1.

Let now T � Tσ. Then T is a a cyclic dyadic permutation of rank n which lies entirely
inside U . (hmm we didn’t need to take ε~k is seems...) �

2.B. Aperiodic automorphisms. Let T > Aut�µ� and x > X. We say that the period of
x under T is n with n A 0 if n is the smallest number so that T n�x� � x. We say that the
period of x under T is ª if for all n A 1 we have T n�x� x x. If there is an n A 1 so that
for µ-almost all x > X the period of x is n, then we say that T is a periodic automorphism
of period n. We have seen that a very special class of periodic permutations on 2N, namely
the cyclic dyadic permutations, is dense in the Aut�µ� in the weak topology. Similarly a
T > Aut�µ� is called aperiodic if for µ-almost all x > X the period of x is ª. We denote the
set of all aperiodic automorphisms of Aut�µ� by APER. Notice that

T > APER 
� ¦n A 0 δu�T n, idX� � 1 
� ¦n A 0 ¦m A 0 δu�T n, idX� A 1 �
1

m
,

where with a careful look the last set is weakly open (see also proposition 1.22). Therefore
APER is uniformly closed and weakly a Gδ set.

Lemma 2.4. The set APER is a dense subset of Aut�µ�.
Proof. It is enough by 2.2 to approximate each dyadic permutation with an aperiodic one.
Fix therefore a π > Σ�2n� and let U � B�Tπ,A1, . . . ,Ak, ε� be a weak open neighborhood of
Tπ. We can assume without the loss of generality that A1, . . . ,Ak are dyadic interval of some
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rank m and we may assume that n C m. So we may take as well n � m. Let now T be any
aperiodic transformation and notice that the automorphism S given by

S�s�x� �� π�s��T �x�, with SsS � n,
is aperiodic and belongs to U . �

Corollary 2.5. A generic automorphism of Aut�µ� belongs to APER.

2.C. Uniform approximation and conjugacy. Our aim here is to prove that for every
T > APER, the conjugacy class �T �conj of T is dense in Aut�µ�. For this, we first show that
we can always uniformly approximate each T > APER with periodic automorphisms. Since
any two periodic automorphisms S,S� of same period n are conjugate one another, we can
use this approximation to control the conjugacy class of T .

Recall that for T > Aut�µ� we denote by ET the induced orbit equivalence relation on X.

Lemma 2.6. Let S,T > Aut�µ� be two periodic automorphisms both of period n. Then S,T
are conjugate one another.

Proof. Using Proposition 12.4, we can pick Borel transversals AS,AT b X for the finite
equivalence relations ES and ET . Notice that µ�AS� � µ�AT � � 1~n. By the measure
isomorphism theorem 7.7 let Q0 � AS � AT be a measure isomorphism. Extend Q to X by
letting QCSi�AS� � T i XQ0 X S�i and notice that T � Q X S XQ�1. �

Next we prove a technical lemma that we need for the main theorem.

Lemma 2.7 (Rokhlin Lemma). For every T > APER, for every ε A 0 and n C 1 there is a
Borel ET -complete section A `X with the following properties:

(1) T i�A� 9 T j�A� � g for all 0 C i, j @ n;
(2) µ�X ��i@n T i�A�� @ ε;
(3) µ�A� B 1~n .

Proof. Let �Am�m>N be a vanishing sequence of Borel markers for the equivalence relation
ET as given by Lemma 12.7. For every x >X and m > N let

dl�x,m� �� min�k � T �k�x� > Am �,
where the minimum over the empty set is set to be ª. Similarly let

dr�x,m� �� min�k � T k�x� > Am �.
Consider now the set Bm � �x > X � dl�x,m� @ n or dr�x,m� @ n �. Since �m>NAm � g we
have that �Bm� is also a decreasing sequence of Borel sets with empty intersection. Therefore
we can fix m0 large enough so that µ�Bm0� @ ε. For every j among �0,1, . . . , n�1� we define
the set Cj of all x > X with dr�x,m0� C n and with dl�x,m0� � j modn if dl�x,m0� x ª

or otherwise with dr�x,m0� � j modn. Notice that for every j the set Cj is Borel. For
some j0 > �0,1, . . . , n � 1� we have that µ�Cj0� B 1~n. Let A � Cj0 . This is the desired
A since by construction the T i-translates of A are all disjoint for 0 B i @ n and moreover
�0Bi@n T i�A� cX �Bm0 with µ�Bm0� @ ε. �

We have now the following theorem as consequence.

Theorem 2.8 (Rokhlin, Halmos). Let T > APER. Then for every n C 1 and for every ε A 0
there is a periodic S > Aut�µ� of period n so that δu�T,S� @ ε � 1~n.
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Proof. Let A ` X as in Lemma 2.7 and let D � A 8 T �A� 8 . . . 8 T n�1�A�. We define S
as follows: for every x > D let S�x� � T �x� and on the remaining “error set” Dc build
an arbitrary n-periodic Borel automorphisms. A way to achieve this is to use the measure
isomorphism theorem to identify (after re-normalizing the measure to 1) Dc with �0,1� and
then take S on Dc to be �� 1

n�mod 1. �

We have now as corollary the conjugacy theorem:

Theorem 2.9. For T > Aut�µ� the following are equivalent:

(i) T > APER;
(ii) �T �conj is uniformly dense in APER, and

(iii) �T �conj is weakly dense in Aut�µ�.
Proof. �i� ii� Let S > APER and let ε A 0. By Theorem 2.8 and for N > N with 1~N @ ε~4
we can pick periodic S�, T � both of period N so that δu�T,T ��, δu�S,S�� @ ε~4 � 1~N @ ε~2.
By Lemma 2.6 we get Q > Aut�µ� with QT �Q�1 � S�. Hence

δu�QTQ�1, S� B δu�QTQ�1,QT �Q�1� � δu�QT �Q�1, S� � δu�QTQ�1,QT �Q�1� � δu�S�, S�
and since δu is left and right invariant we have

� δu�QTQ�1,QT �Q�1� � δu�S�, S� � δu�T,T �� � δu�S�, S� @ �ε~4 � 1~N� � �ε~4 � 1~N� @ ε.
�ii� iii� This follows from the fact that APER is weakly dense in Aut�µ� and the fact that
the uniform topology is stronger than the weak topology.�iii � i� Assume that T ~> APER. Then for some n > N we have that µ��x > X � T n�x� �
x�� � ε A 0 and therefore δu�T n, id� B 1 � ε for some ε A 0. Fix such n and ε and let
A � �x > X � T n�x� � x�. Let also D � �T �conj. We will show that D is not weakly dense

in APER. We already have that Dn b Bu�id,1 � ε�. Notice moreover that Bu�id,1 � ε�
is weakly closed. Since pn � g ( gn is continuous in every topological group, we have that

p�1
n �Bu�id,1 � ε�� is still weakly closed, it contains D and it is disjoint from APER. Therefore

D
w
` p�1

n �Bu�id,1 � ε�� completely misses APER. �

2.D. Ergodic automorphisms.

3. Conjugary and unitary equivalence
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Part 2. The spaces of actions of countable groups
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Part 3. Appendix on descriptive set theory

4. Polish spaces

4.A. Definition and examples.

Definition 4.1. A topological space is called Polish if it is separable and completely metriz-
able (i.e. admits a complete compatible metric).

We work with Polish topological spaces as opposed to Polish metric spaces because we
don’t want to fix a particular complete metric, we may change it to serve different purposes;
all we care about is that such a complete compatible metric exists. Besides, our maps are
homeomorphisms and not isometries, so we work in the category of topological spaces and
not metric spaces.

Examples 4.2.

(a) For all n > N, n � �0,1, ..., n � 1� is Polish with discrete topology; so is N;

(b) Rn and Cn, for n C 1;

(c) Separable Banach spaces; in particular, separable Hilbert spaces, `p�N� and Lp�R� for
0 @ p @ª.

The following lemma, whose proof is left as an exercise, shows that when working with
Polish spaces, we may always take a complete compatible metric d B 1:

Lemma 4.3. If X is a topological space with a compatible metric d, then the following metric
is also compatible: for x, y >X, D�x, y� � min�d�x, y�,1�.
Proposition 4.4.

(a) Completion of any separable metric space is Polish.
(b) A closed subset of a Polish space is Polish (with respect to relative topology).
(c) A countable disjoint union3 of Polish spaces is Polish.
(d) A countable product of Polish spaces is Polish (with respect to the product topology).

Proof. (a) and (b) are obvious. We leave (c) as an exercise and prove (d). To this end,
let Xn, n > N be Polish spaces and let dn B 1 be a complete compatible metric for Xn. For
x, y >Ln>NXn, define

d�x, y� � Q
n>N

2�ndn�x�n�, y�n��.
It is easy to verify that d is a complete compatible metric for the product topology on
Ln>NXn. �

Examples 4.5.

(a) RN, CN;

3Disjoint union of topological spaces �Xi�i>I is the space "i>I Xi �� �i>I �i� � Xi equipped with the
topology generated by sets of the form �i� �Ui, where i > I and Ui bXi is open.
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(b) The Cantor space C �� 2N, with the discrete topology on 2;

(c) The Baire space N �� NN, with the discrete topology on N.

(d) The Hilbert cube �0,1�N.

We also obtain the following general class of examples as a nice application of Proposi-
tion 4.4. For a metric space �X,d�, denote by Iso�X,d� the group of all isometries of �X,d�.
This is a group under composition and one easily checks that the pointwise convergence
topology turns it into a topological group (i.e. multiplication and inverse are continuous).

Proposition 4.6. Let �X,d� be a complete separable metric space. Then Iso�X,d� endowed
with the pointwise convergence topology is Polish.

Proof. Let �xn�n b X be a dense sequence. Consider the map α � Iso�X,d� � XN by
T ( �T �xn��n. It is easy to check that this is a topological embedding. Moreover, the image

Y �� α�Iso�X,d�� is a closed subset of XN: indeed,

Y � ��yn�n >XN
� ¦n,m d�xn, xm� � d�yn, ym�� .

Since XN is Polish, so is Y (being a closed subset), and hence Iso�X,d�. �

By (b) of Proposition 4.4, closed subsets of Polish spaces are Polish. What other subsets
have this property? The proposition below answers this question, but first we recall here
that countable intersections of open sets are called Gδ sets, and countable unions of closed
sets are called Fσ.

Lemma 4.7. If X is a metric space, then closed sets are Gδ; equivalently, open sets are Fσ.

Proof. Let C b X be a closed set and let d be a metric for X. For ε A 0, define Uε ��x >X � d�x,C� @ ε�, and we claim that C � �nU1~n. Indeed, C b �nU1~n is trivial, and
to show the other inclusion, fix x > �nU1~n. Thus, for every n, we can pick xn > C with
d�x,xn� @ 1~n, so xn � x as n�ª, and hence x > C by the virtue of C being closed. �

Proposition 4.8. A subset of a Polish space is Polish if and only if it is Gδ.

Proof. Let X be a Polish space and let dX be a complete compatible metric on X.

: We first prove that an open subset U b X is Polish. The idea is to define a compatible
metric for the topology of U so that it makes the boundary of U look like infinity (to prevent
sequences that converge to boundary points from being Cauchy). It is easy to check that
the following metric works: for x, y > U ,

dU�x, y� � dX�x, y� � W 1

dX�x, ∂U� �
1

dX�y, ∂U�W .
Now if Y b X is Gδ, that is, Y � �n>NUn with Un open, then letting dn be a complete
compatible metric for Un, we can define one for Y as follows: for x, y, > Y ,

dY �x, y� � Q
n>N

2�ndn�x, y�.
� (Alexandrov): Let Y b X be completely metrizable and let dy be a complete compatible
metric for Y . Define an open set Vn bX as the union of all open sets U bX that satisfy

(i) U 9 Y x g,
(ii) diamdX�U� @ 1~n,
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(iii) diamdY �U 9 Y � @ 1~n.

We show that Y � �n>N Vn. First fix x > Y and take any n > N. Take an open neighborhood
U1 b Y of x in Y of dY -diameter less than 1~n. By the definition of relative topology, there
is an open set U2 in X such that U2 9 Y � U1. Let U3 be an open neighborhood of x in X
of dX-diameter less than 1~n. Then U � U2 9U3 satisfies all of the conditions above. Hence
x > Vn.

Conversely, if x > �n>N Vn, then for each n > N, there is an open (relative to X) neighbor-
hood Un b X of x satisfying the conditions above. Condition (ii) implies that x > Y , so any
open neighborhood of x has a nonempty intersection with Y ; because of this, we can replace
Un by �mBnUm and assume without loss of generality that �Un�n>N is decreasing. Now, take
xn > Un 9 Y . Conditions (i) and (ii) imply that �xn�n>N converges to x. Moreover, condition
(iii) and the fact that �Un�n>N is decreasing imply that �xn�n>N is Cauchy with respect to dY .
Thus, since dY is complete, xn � x� for some x� > Y . Because limit is unique in Hausdorff
spaces, x � x� > Y . �

As an example of a Gδ subset of a Polish space, we give the following proposition, whose
proof is left to the reader.

Proposition 4.9. The Cantor space C is homeomorphic to a closed subset of the Baire space
N , whereas N is homeomorphic to a Gδ subset of C.

4.B. Cantor space as the “smallest” uncountable Polish space. Recall that a limit
point of a topological space is a point that is not isolated. A space is perfect if all its points
are limit points. If P is a subset of a topological space X, we call P perfect in X if P is
closed and perfect in its relative topology. For example, Rn, RN, Cn, CN, �0,1�N, C, N are
perfect. Another example of a perfect space is C�X�, where X compact metrizable. Note
that Q is perfect as a topological space, but it is not a perfect subset of R as it is not closed.

We now list some important results, whose proofs can be found in [Kec95] and [Tse13].
The following is perhaps the first theorem in descriptive set theory.

Perfect Set Theorem 4.10 (Cantor?). The Cantor space C embeds into any nonempty
perfect Polish space.

The last theorem shows, in particular, that perfect Polish spaces have cardinality at least
continuum.

Example 4.11. The space Q with its usual topology (the relative topology of R) is not
Polish since it is a perfect topological space, yet countable.

Theorem 4.12 (Cantor–Bendixson). Let X be a Polish space. Then X can be uniquely
written as X = P 8U , with P a perfect subset of X and U countable open.

Theorems 4.10 and 4.12 give:

Corollary 4.13. The Cantor space C embeds into any uncountable Polish space.

This last corollary says that Polish spaces satisfy the Continuum Hypothesis, i.e. there
is no Polish space of cardinality strictly in between countable and continuum. Inspired by
this, we (Cantor?) isolate the following property of subsets of Polish spaces:

Definition 4.14. For a Polish space X, say that a subset A bX has the perfect set property
(PSP) if it either it is countable or contains a homeomorphic copy of C.
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By the last corollary, Polish spaces themselves have the PSP and hence so the Gδ subsets
of Polish spaces being themselves Polish in the relative topology. One may wonder how
far we can push this (Borel, analytic, co-analytic, Σ2

1, etc.), and this question gets difficult
quickly, in a very precise sense.

4.C. Possible cardinalities for Polish spaces. What cardinalities can Polish spaces at-
tain? The following gives an upper bound:

Proposition 4.15. Any separable first countable topological space X has cardinality at most
continuum.

Proof. Fixing a countable dense set D, we embed X into DN by choosing, for each x > X,
a sequence �dn�n b D that converges to x (this can be done by first countability). Thus,SX S B SDNS B SNNS B S�2N�NS � S2N�NS � S2NS. �

Assuming the Continuum Hypothesis (CH), this shows that the possible cardinalities for
Polish spaces are countable or continuum, but can we prove this without assuming CH? Yes,
this is exactly what Corollary 4.13 implies: any uncountable Polish space has cardinality at
least continuum. Thus, the possible Polish space cardinalities are: 0,1,2, ...,¯0,2¯0 .

4.D. Baire space as the “largest” Polish space. Just like Cantor space, Baire space
N �� NN occupies a very special and important place among all Polish spaces, and this is
mainly due to the following theorem:

Theorem 4.16. For any Polish space X, there is a closed set C b N and a continuous
bijection f � C �X.

One can show that Baire space can be continuously contracted to any of its nonempty
closed subsets (by contracting the tree N@N to a subtree), which, in conjunction with the
above theorem, gives:

Corollary 4.17. Any nonempty Polish space X is a continuous image of N .

5. Borel sets

5.A. σ-algebras and measurable spaces. Recall that an algebra A on a set X is a family
of subsets of X containing g and closed under complements and finite unions (hence also
finite intersections). An algebra A on X is called a σ-algebra if it is closed under countable
unions (hence also countable intersections). For a family E of subsets of X, let σ�E� denote
the smallest σ-algebra containing E . We say that E generates the given σ-algebra A or that
E is a generating set for A if σ�E� � A.

For a collection E of subsets of X, put � E � �Ac � A > E�, where Ac �X �A.

Proposition 5.1. Let X be a set and g > E b P�X�. Then σ�E� is the smallest collection S
of sets that contains E ,� E , and is closed under countable unions and countable intersections.

Proof. Put S� � �A > S � A,Ac > S�. Clearly, S� c E and it is trivially closed under comple-
ments. Because complement of a union is the intersection of complements, S� is also closed
under countable unions, and thus is a σ-algebra. Hence, σ�E� b S� b S b σ�E�. �

Definition 5.2. A measurable space is a pair �X,S� where X is a set and S is a σ-algebra on
X. For measurable spaces �X,S�, �Y,A�, a map f �X � Y is called measurable if f�1�A� > S
for each A > A.
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For a topological space Y , let B�Y � denote the σ-algebra generated by all open sets and it
is called the Borel σ-algebra of Y . The sets in B�Y � are called Borel sets. For a measurable
space �X,S�, a map f �X � Y is called measurable if it is measurable as a map from �X,S�
to �Y,B�Y ��, i.e. the preimage of a Borel set is in S . For topological spaces X,Y , a map
f �X � Y is called Borel (or Borel measurable) if it is measurable as a map from �X,B�X��
to Y , i.e. the preimages of Borel sets are Borel.

Proposition 5.3. Let �X,S�, �Y,A� be measurable spaces and let F be a generating set for
A. Then, a map f �X � Y is measurable if f�1�A� > S for every A > F . In particular, if Y
is a topological space and A � B�Y �, then f is measurable if the preimage of every open set
is in S.

Proof. It is easy to check that A� � �A > A � f�1�A� > S� is a σ-algebra and contains F .
Thus, A� � A and hence f�1�A� b S . �

This proposition in particular implies that continuous functions are Borel.

5.B. The stratification of Borel sets into a hierarchy. Let X be a topological space.
We will now define the hierarchy of the Borel subsets of X, i.e. the recursive construction
of Borel sets level-by-level, starting from the open sets.

Let ω1 denote the first uncountable ordinal, and for 1 B ξ @ ω1, define by transfinite
recursion the classes Σ0

ξ ,Π
0
ξ of subsets of X as follows:

Σ0
1�X� � �U bX � U is open�

Π0
ξ�X� �� Σ0

ξ�X�
Σ0
ξ�X� � ��

n
An � An > Π0

ξn
�X�, ξn @ ξ, n > N¡ , if ξ A 1.

In addition, we define the so-called ambiguous classes ∆0
ξ�X� by

∆0
ξ�X� � Σ0

ξ�X� 9Π0
ξ�X�.

Traditionally, one denotes by G�X� the class of open subsets of X, and by F �X� the class
of closed subsets of X. For any collection E of subsets of subsets of X, let

Eσ � ��
n
An � An > E , n > N¡

Eδ � ��
n
An � An > E , n > N¡ .

Then we have Σ0
1 � G�X�,Π0

1�X� � F �X�,Σ0
2�X� � Fσ�X�,Π0

2�X� � Gδ�X�,Σ0
3�X� �

Fσδ�X�,Π0
3�X� � Gδσ�X�, etc. Also, note that ∆0

1�X� � �A bX � A is clopen�.

Proposition 5.4 (Closure properties). For a topological space X and for each ξ C 1, the
classes Σ0

ξ�X�,Π0
ξ�X� and ∆0

ξ�X� are closed under finite intersections and finite unions.

Moreover, Σ0
ξ is closed under countable unions, Π0

ξ under countable intersections, and ∆0
ξ

under complements.

Proof. The only statement worth checking is the closedness of the classes Σ0
ξ under finite

intersections, but it easily follows by induction on ξ using the fact that

�
n
An 9�

n
Bn � �

n,m
�An 9Bm�.
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The statements about Π0
ξ follows from those about Σ0

ξ by taking complements. �

Proposition 5.5. Let X be a metrizable space.

(a) Σ0
ξ�X� 8Π0

ξ�X� b ∆0
ξ�1�X�.

(b) B�X� � �ξ@ω1
Σ0
ξ�X� � �ξ@ω1

∆0
ξ�X� � �ξ@ω1

Π0
ξ�X�.

Proof. We omit the proof as it is a tedious transfinite induction argument. We remark,
however, that the metrizability assumption is only used in the proof of the base case of (a),
namely, to show that Σ0

1�X� b Σ0
2�X�, which is the statement of Lemma 4.7. �

Thus, we have the following picture:

Σ0
1 Σ0

2 Σ0
ξ

b b b b b b
∆0

1 ∆0
2 ∆0

3 . . . ∆0
ξ ∆0

ξ�1 . . .
b b b b b b

Π0
1 Π0

2 Π0
ξ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B
Note that if X is second countable, then SΣ0

1�X�S B 2¯0 and hence, by induction on ξ @ ω1,SΣ0
ξ�X�S B S�2¯0�¯0 S � S2¯0�¯0 S � 2¯0 , hence also SΠ0

ξ�X�S B 2¯0 . Thus, it follows from (b) of the

previous proposition that SB�X�S B Sω1 � 2¯0 S, and by Axiom of Choice, Sω1 � 2¯0 S � 2¯0 , so
there are at most continuum many Borel sets.

Example 5.6. Let C1 be the set of all continuously differentiable function in C��0,1�� (at
the endpoints we take one-sided derivatives). We will show that C1 is Π0

3 and hence Borel.
It is not hard to check that for f > C��0,1��, f > C1 iff for all ε > Q� there exist rational

open intervals I0, ..., In�1 covering �0,1� such that for all j @ n:

¦a, b, c, d > Ij 9 �0,1� with a x b, c x d�Vf�a� � f�b�
a � b

�
f�c� � f�d�

c � d
V B ε� .

So if for an open interval J and ε A 0, we put

AJ,e � �f > C��0,1�� � ¦a, b, c, d > J 9 �0,1� with a x b, c x d, Vf�a� � f�b�
a � b

�
f�c� � f�d�

c � d
V B ε  ,

we have that Aj,e is closed in C��0,1�� and

C1 � �
ε>Q�

�
n

�
�I0,...,In�1�

�
j@n

AIj ,ε,

where �I0, ..., In�1� varies over all n-tuples of rational open intervals with �i@n Ii c �0,1�.
Thus, C1 is Π0

3.

5.C. Universal sets for Σ0
ξ and Π0

ξ, and diagonalization. The classes Σ0
ξ ,Π

0
ξ and ∆0

ξ

provide for each Polish space X a hierarchy for B�X� of at most ω1 levels. We will next
show that this is indeed a proper hierarchy, i.e., all these classes are distinct, when X is
uncountable. To accomplish this, we will construct, for each ξ @ ω1, a set that parameterizes
Σ0
ξ and then apply the Cantor diagonalization technique.

Definition 5.7. Let Γ be a class of sets in topological spaces (such as Σ0
ξ ,Π

0
ξ , ∆0

ξ , B, etc.)

and let X,Y be topological spaces. We say that a set U b Y �X parameterizes Γ�X� if

�Uy � y > Y � � Γ�X�.
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If, moreover, U itself is in Γ (i.e. U > Γ�Y �X�), we say that U is Y -universal for Γ�X�.
Theorem 5.8. Let X be a separable metrizable space. Then for each ξ C 1, there is a
C-universal set for Σ0

ξ�X�, and similarly for Π0
ξ�X�.

Proof. We prove by induction on ξ. Let �Vn�n>N be an open basis for X. Because every
Σ0

1(�open) set is a union of some subsequence of these Vn, we define U b C �X as follows:
for y > C, put

Uy � �
n,y�n��1

Vn.

It is clear U parameterizes Σ0
1�X�. Moreover, U is open because for �y, x� > C �X,

�y, x� > U 
� x > �
n,y�n��1

Vn 
� §n > N �y�n� � 1 , x > Vn�.
Thus indeed, U is C-universal for Σ0

1.

Note next that if U b C �X is C-universal for Γ�X�, then U c is C-universal for the dual
class Γ̌�X�. In particular, if there is a C-universal set for Σ0

ξ�X�, there is also one for Π0
ξ�X�.

We skip the argument for handling countable unions and just remark that we encode
countably many C-parameters into elements of CN, and the latter space is easily shown to
be homeomorphic to C using a bijection N � N �Ð� N (just like when showing that Q is
countable). �

Corollary 5.9. Let X be separable metrizable and Y be uncountable Polish. For any 1 B ξ @
ω1, there is a Y -universal set for Σ0

ξ�X�, and similarly for Π0
ξ.

Proof. We skip the details and just remark that this is done using the fact that Cantor space
embeds into any uncountable Polish space (Corollary 4.13). �

Lemma 5.10 (Diagonalization). For a set X and R bX2, put AntiDiag�R� � �x >X �  R�x,x��.
Then AntiDiag�R� x Rx for any x >X.

Proof. Assume for contradiction that AntiDiag�R� � Rx, for some x > X. Then we get a
contradiction because

 R�x,x� 
� x > AntiDiag�R� 
� x > Rx 
� R�x,x�.
�

Corollary 5.11. For every uncountable Polish space X and every 1 B ξ @ ω1, Σ0
ξ�X� x

Π0
ξ�X�. In particular, ∆0

ξ�X� ø Σ0
ξ�X� ø ∆0

ξ�1�X�, and the same holds for Π0
ξ.

Proof. Let U b X �X be an X-universal set for Σ0
ξ�X� and take A � AntiDiag�U�. Since

A � δ�1�U c�, where δ � X � X2 by x ( �x,x�, A > Π0
ξ�X�. However, by the Diagonalization

lemma, A x Ux for any x >X, and thus A ¶ Σ0
ξ�X�. �

5.D. Turning Borel sets into clopen sets. The following theorem is truly one of the
most useful facts about Borel sets. Recall that a Polish space X is formally a set X with
a topology T on it (i.e. the collection of the open sets), so it is really a pair �X,T �. We
denote the Borel subsets of X by B�X,T � or just B�T �, when we want to emphasize the
topology with respect to which the Borel sets are taken.
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Theorem 5.12. Let �X,T � be a Polish space. For any countable collection of Borel sets�An�n b X, there is a finer Polish topology T � c T with respect to which each An is clopen,
yet B�T �� � B�T � .

We now give a couple of very useful applications.

Corollary 5.13. Borel subsets of Polish spaces have the PSP.

Proof. Let B be an uncountable Borel subset of a Polish space �X,T �. By the previous
theorem, there is a Polish topology T � c T in which B is clopen and hence �B,T �CB� is
Polish, where T �CB denotes the relative topology on B with respect to T �. Now by the PSP
for Polish spaces, there is an embedding f � C 0 �B,T �CB�. But then f is still continuous as
a map from C into �B,T CB� as T CB has fewer open sets. Hence, because C is compact, f is
still automatically an embedding from C into �B,T CB�. �

Corollary 5.14. Let �X,T � be a Polish space, Y be a second countable space, and f �X � Y
be a Borel function. There is a Polish topology Tf c T with B�Tf� � B�T � that makes f
continuous.

Proof. Let �Vn�n>N be a countable basis for Y and let Tf c T be a Polish topology on X that
makes each f�1�Vn� clopen and has the same Borel sets as T . The function f � �X,Tf�� Y
is now continuous. �

Corollary 5.15. Let �X,T � be a Polish space and B bX be Borel. There is a closed subset
F b N and a continuous bijection f � F � A. In particular, if A x g, there is a continuous
surjection f̄ �N � A.

Proof. Let T � c T be a Polish topology making B clopen. Hence �B,T �CB� is Polish, so we
can apply Theorem 4.16 and Corollary 4.17. �

Corollary 5.16. For any Polish �X,T �, there is a zero-dimensional Polish topology T0 c T
with B�T0� � B�T �.
Proof. Left as an exercise (iterate Theorem 5.12). �

Corollary 5.17. Any Borel action of a countable group Γ on a Polish space �X,T � has
a continuous realization, i.e. there is a Polish topology T � c T with B�T �� � B�T �, with
respect to which the action is continuous. In fact, T � can be taken to be zero-dimensional.

Proof. For the first statement, fix a countable basis U for T and take a Polish topology
T � c T that makes the sets γ�1U , γ > Γ, U > U , clopen. Using the associativity of the
action, one easily verifies that the action is continuous with respect to T �. To also get zero-
dimensionality, one has to alternate the latter procedure and Corollary 5.16 countably many
times. �

5.E. Images under small-to-one Borel functions. We will see in a later section that
continuous images of Borel (or even just closed) sets may no longer be Borel (they are called
analytic). However, the situation may be different if the preimage of every point is “small”.
In this subsection, we will list some results with various notions of “small”, starting from
the cases where the domain space itself if “small”.

Below we use the terms σ-compact or Kσ for subsets of topological spaces that are count-
able unions of compact sets. Also, for topological spaces X,Y , let projX �X �Y �X denote
the projection function onto the X coordinate.
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Proposition 5.18. (a) Continuous functions map compact sets to compact sets.

(b) Continuous functions map Kσ sets to Kσ sets.

(c) Tube lemma. For topological spaces X,Y with Y compact, projX maps closed subsets
of X � Y to closed subsets of X.

Proof. (a) is just by unraveling the definitions and it immediately implies (b). For (c), let
F bX � Y be closed, x ¶ projX�F � and consider the open cover �Vy�y>Y of Y where Vy ? y is
open and is such that for some nonempty open neighborhood Uy bX of x, Uy �Vy is disjoint
from F . �

Examples 5.19.

(a) proj1 � R �R � R does not in general map closed sets to closed sets: e.g., take F to be
the graph of 1~x with domain �0,1�, then F is closed, but its projection is �0,1�.

(b) However, because R is σ-compact (hence Kσ � Fσ) and Hausdorff (hence compact sets
are closed), it follows from (b) of Proposition 5.18 that proj1 � R �R � R maps Fσ sets
(in particular, closed sets) to Fσ sets.

The following is one of the most used results in descriptive set theory.

Theorem 5.20 (Luzin–Souslin). Let X,Y be Polish spaces and f � Y � X be Borel. If
A b Y is Borel and fCA is injective, then f�A� is Borel.

Corollary 5.21. Let X,Y be Polish and f � X � Y be Borel. If f is injective, then it is a
Borel embedding, i.e. f maps Borel sets to Borel sets.

The Luzin–Souslin theorem together with Corollary 5.15 gives the following characteriza-
tion of Borel sets:

Corollary 5.22. A subset B of a Polish space X is Borel iff it is an injective continuous
image of a closed subset of N .

This shows the contrast between Borel and analytic as the latter sets are just continuous
images of closed subsets of N .

Now, how big can the “small” be so that the Borel sets are still closed under “small”-to-
one images? It turns out that for small being σ-compact, this is still true and this is a deep
theorem of Arsenin and Kunugui [Kec95, 18.18]. Here we will only state a very important
special case of this, which will be enough for our purposes.

For topological spaces X,Y , call a set A bX �Y a Borel graph if for every x >X, the fiber
Ax �� �y > Y � �x, y� > A� has at most one element.

Theorem 5.23 (Luzin–Novikov). Let X,Y be Polish spaces and B b X � Y be a Borel set
all of whose X-fibers are countable, i.e. for every x > X, Bx is countable. Then B can be
partitioned into countably many disjoint Borel graphs B � "nBn.

Corollary 5.24. The class of Borel subsets of Polish spaces is closed under countable-to-one
Borel images.
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Proof. Let Z,X be Polish spaces, f � Z � X be a countable-to-one Borel function, B b Z a
Borel set, and we show that f�B� is Borel. By replacing B with graph�fCB�, we may assume
that Z � X � Y , for some Polish space Y , and f � projX . By the Luzin–Novikov theorem,
B � "nBn, where each Bn is a Borel graph. For each n, f�Bn� is Borel by Theorem 5.20,
and thus, so is f�B� � �n f�Bn�. �

The next corollary says, in particular, that given a Borel set B b X � Y with countable
X-fibers, for each x > projX�B�, we can choose in a Borel way (“uniformly”) a witness y > Y
with �x, y� > B.

Corollary 5.25 (Countable uniformization). For Polish spaces Z,X, any countable-to-one
Borel function f � Z �X admits a Borel right inverse g � f�Z�� Z.

Proof. Just like in the proof of Corollary 5.24, we may assume that Z �X�Y and f � projX .
By the Luzin–Novikov theorem, B � "nBn, where each Bn is a Borel graph. Define k �X � N
by x ( the least n > N with x > projX�Bn�, and finally define g � X � X � Y by x ( �x, y�,
where y > Y is the unique element with �x, y� > Bk�x�. It is straightforward to check that the
function k, and hence also g, is Borel. �

5.F. The Borel Isomorphism Theorem. The following is the Borel analogue of the
Schröder–Bernstein–Cantor Theorem, which states that if one set can be injected into an-
other and vice versa, then there is a bijection between them. It is yet another corollary of
the fact that one-to-one Borel images of Borel sets are Borel.

Corollary 5.26 (The Borel Schröder–Bernstein–Cantor Theorem). Let X,Y be Polish and
f �X 0 Y , g � Y 0X be Borel injections. Then X and Y are Borel isomorphic.

Proof. Run the same proof as for the regular Schröder–Bernstein theorem and note that all
the sets involved are images of Borel sets under f or g, and hence are themselves Borel by
??. Thus, the resulting bijection is a Borel isomorphism. �

The following theorem shows how robust the framework of Polish spaces is when studying
Borel sets and beyond.

The Borel Isomorphism Theorem 5.27. Any two Polish spaces of the same cardinality
are isomorphic. In particular, any two uncountable Polish spaces are Borel isomorphic.

Proof. The statement for countable Polish spaces is obvious since their Borel σ-algebra is
all of their powerset. For uncountable Polish space, it is enough to show that if X is
uncountable, then it is Borel isomorphic to C. By the Borel Schröder–Bernstein–Cantor
theorem, it is enough to show that there are Borel injections C 0 X and X 0 N since N
embeds into C. The embedding C 0 X is given by Corollary 4.13. By Theorem 4.16, there
is a closed subset F bN and a continuous bijection f � F �X. By ??, f maps Borel sets to
Borel sets, so f�1 is a Borel map, embedding X into N . �

Corollary 5.28. Any Polish space admits a Borel linear ordering.

Proof. By the Borel Isomorphism Theorem, any Polish space X is either Borel isomorphic to
R or embeds into N, so we can copy the natural linear orderings from the latter spaces. �
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5.G. Standard Borel spaces. As the Borel Isomorphism Theorem shows, it really does
not matter which Polish space to consider when working in the Borel context. The following
definition makes abstracting from the topology but keeping the Borel structure precise.

Definition 5.29. A measurable space �X,S� is called a standard Borel space if there is a
Polish topology T on X such that B�T � � S . In this case, we call T a compatible Polish
topology and refer to the sets in S as Borel sets.

Examples 5.30.

(a) An obvious example of a standard Borel space is a Polish space with its Borel σ-algebra:�X,B�X��.
(b) A less immediate example, due to Theorem 5.12, is a Borel subset A of a Polish

space X equipped with the relative Borel σ-algebra: �A,B�X�CA�, where B�X�CA ��B 9A � B > B�X�� � �B > B�X� � B b A�.

6. Analytic sets

It is clear that the class of Borel sets is closed under continuous preimages, but is it closed
under continuous images?

Definition 6.1. A subset A of a Polish space X is called analytic if it is a continuous image
of a Borel subset of some Polish space; more precisely, if there is a Polish space Y , a Borel
set B b Y and a continuous function f � Y �X such that f�B� � A.

Clearly, all Borel sets are analytic, but is the converse true? Historically, Lebesgue had a
“proof” that continuous images of Borel sets are Borel, but several years later Souslin found
a mistake in Lebesgue’s proof; moreover, he constructed an example of a closed set whose
projection was not Borel. Hence continuous images of Borel sets were new kinds of sets,
which he and his advisor Luzin called analytic and systematically studied the properties
thereof. This is often considered the birth of descriptive set theory.

6.A. Basic facts and closure properties. Before we exhibit an analytic set that is not
Borel, we give the following equivalences to being analytic.

Proposition 6.2. Let X be Polish and A bX. The following are equivalent:

(1) A is analytic;
(2) There is Polish Y and continuous f � Y �X with A � f�Y �;
(3) There is continuous f �N �X with A � f�N �;
(4) There is closed F bX �N with A � projX�F �;
(5) There is Polish Y and Borel B bX � Y with A � projX�B�;
(6) There is Polish Y , Borel B b Y and Borel f � Y �X with A � f�B�;
Proof. (4)�(5)�(1)�(6) are trivial, (1)�(2) is immediate from Theorem 5.12, (2)�(3)
follows from Corollary 4.17, and (3)�(4) follows from the fact that graphs of continuous
functions are closed and f�Y � � projX�graph�f��.

Finally, the implication (6)�(1) follows from Corollary 5.14. Alternatively, one could
deduce (6)�(5) from the fact that if f � Y � X and B b Y are Borel, then graph�fCB� is
Borel and f�B� � projX�graph�fCB��. �
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Let Σ1
1 denote the class of all analytic subsets of Polish spaces, so for a Polish space X,

Σ1
1�X� is the set of all analytic subsets of X.

Proposition 6.3 (Closure properties of Σ1
1). The class Σ1

1 is closed under

(i) continuous images and preimages;
(ii) (in fact) Borel images and preimages;

(iii) countable intersections and unions.

Proof. We only prove the closure under countable intersections and leave the rest as an
exercise. Let An be analytic subsets of a Polish space X. By (4) of Proposition 6.2, there
are closed sets Cn b X �N such that An � projX�Cn�. Let Y � X �Nª and consider the
set C b Y defined by

�x, �yn�n>N� > Y 
� ¦n > N�x, yn� > Cn.
Clearly, C is Borel (in fact it is closed) and �nAn � projX�C�. �

Let Π1
1 �� Σ1

1 denote the dual class, and we call the elements of Π1
1 co-analytic. By (4) of

Proposition 6.2, we have

Σ1
1 � §

NB � §NΠ0
1,

and consequently,

Π1
1 � ¦

NB � ¦NΣ0
1.

Furthermore, put ∆1
1 � Σ1

1 9Π1
1. It is clear that B b ∆1

1, and we will see below that these
are actually equal.

6.B. A universal set for Σ1
1. We now focus on showing that Σ1

1 x Π1
1 and hence there

are analytic sets that are not Borel. As with the Borel hierarchy, we start with a universal
analytic set:

Theorem 6.4 (Souslin). For any uncountable Polish Y and Polish X, there is an Y -
universal set U b Y �X for Σ1

1�X�. The same holds for Π1
1�X�.

Proof. The idea is to use (4) of Proposition 6.2, so we start with a Y -universal set F b
Y � �X � N � for Π0

1�X � N �, which exists by Corollary 5.9. Put U � projY �X�F � ���y, x� > Y �X � §z >N �y, x, z� > F� and note that U is analytic being a projection of a
closed set. We claim that U also parametrizes Σ1

1�X�. Indeed, let A bX be analytic, so by
(4) of Proposition 6.2, there is a closed set C b X �N with A � projX�C�. Then there is
y > Y with Fy � C and hence A � projX�C� � projX�Fy� � �projY �X�F ��y � Uy and we are
done. �

Corollary 6.5 (Souslin). For any uncountable Polish space X, Σ1
1�X� x Π1

1�X�. In partic-
ular, B�X� b ∆1

1�X� x Σ1
1�X�, and same for Π1

1�X�.
Proof. Take anX-universal set U bX�X for Σ1

1�X� and putA � AntiDiag�U� � �x >X � �x,x� ¶ U�.
Let δ � X � X �X by x ( �x,x� and note that it is continuous. Because A � δ�1�U c� and
U c is co-analytic, A is also co-analytic. However, it is not analytic since otherwise A would
have to be equal to a fiber Ux of U , for some x >X, contradicting the diagonalization lemma
(Lemma 5.10).

In particular, A is not Borel, so Ac is analytic but not Borel. �
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6.C. Analytic separation and Borel � ∆1
1.

Theorem 6.6 (Luzin). Let X be a Polish space and let A,B b X be disjoint analytic sets.
There is a Borel set C bX that separates A and B, i.e. D c A and Dc c B.

The following corollary is really what started the development of descriptive set theory.

Corollary 6.7 (Souslin). Let X be Polish and A b X. If A and Ac are both analytic, then
A is Borel. In other words, B�X� � ∆1

1�X�.
Proof. Take a Borel set B separating A and Ac and note that B has to be equal to A. �

Here is an example to illustrate the usefulness of this.

Corollary 6.8. Let X,Y be Polish and f �X � Y . The following are equivalent:

(1) f is Borel;
(2) The graph of f is Borel;
(3) The graph of f is analytic.

Proof. (1)�(2): Fix a countable basis �Vn�n>N for Y and note that for �x, y� > X � Y , we
have

f�x� � y 
� ¦n�y > Vn � x > f�1�Vn��.
Thus

graph�f� ��
n

�proj�1
Y �V c

n � 8 proj�1
X �f�1�Vn��� ,

and hence is Borel.
(3)�(1): Assume (3) and let U b Y be open; we need to show that f�1�U� is Borel. But for
x >X, we have

x > f�1�U� 
� §y > Y �f�x� � y and y > U�

� ¦y > Y �f�x� � y � y > U�,

so f�1�U� is both analytic and co-analytic, and hence is Borel by Souslin’s theorem. �

Corollary 6.9. Let X be Polish and let �An�n>N be a disjoint family of analytic subsets of
X. Then there is a disjoint family �Bn�n>N of Borel sets with Bn c An.

7. Borel measures and the measure algebra

7.A. Definitions and examples. Let X be a Polish space and let B�X� denote the Borel
σ-algebra of X.

Definition 7.1. A Borel measure on X is a function µ � B�X� � R� 8 �ª� that takes g to
0 and that is countably additive, i.e. for pairwise disjoint Borel sets An, n > N, we have

µ��
n
An� �Q

n

µ�An�.
Examples 7.2.

(a) The Lebesgue measure on Rn defined first on rectangles as the product of their side
lengths, and then extended to all Borel sets using Caratheodory’s extension theorem.
On R,R2 and R3, this measure corresponds to our intuition of what length, area, and
volume of sets should be.
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(b) The natural measure on the unit circle S1 defined by pushing forward the measure from�0,1� to S1 via the map x( e2πxi.

(c) The Cantor space can be equipped with the so-called coin flip measure, which is given
by µ�Ns� � 2�SsS, thus µ�C� � 1.

(d) In general, it is a theorem of Haar that every locally compact Hausdorff topological group
admits a unique, up to a constant multiple, nontrivial regular left-invariant measure that
is finite on compact sets; it is called Haar measure. This generalizes all of the above
examples, including the coin flip measure on the Cantor space since we can identify
C � �Z~2Z�N.

(e) On any set X, one can define the so-called counting measure µc by giving each singleton
measure 1. Similarly, when X is say N�, one can also assign measure 1~2n to �n�, for
n > N� and obtain a probability measure.

A Borel measure µ on X is called continuous (or nonatomic) if every singleton has measure
zero. For example, the measures in all but the last example above are continuous, whereas
in the last example it is purely atomic.

Furthermore, call a Borel measure µ on X finite if µ�X� @ª, and it is called σ-finite if X
can be written as X � �nXn with µ�Xn� @ª. In case µ�X� � 1, we call µ a Borel probability
measure. For example, the measures on S1 and C defined above are probability measure,
the Lebesgue measure on Rn is σ-finite, and the point measure on any uncountable set X is
not σ-finite. In analysis and descriptive set theory, one usually deals with σ-finite measures,
and even more often with probability measures.

Below, we denote by P�X� the set of all Borel probability measures on X.

7.B. The null ideal and measurability. Let X be a standard Borel space.

Definition 7.3. For a Borel measure µ on X, the null ideal of µ, noted NULLµ, is the family
of all subsets of Borel sets of measure 0.

Because of countable additivity, NULLµ is a σ-ideal, and the sets in it are called µ-null
(or just null) sets.

For two sets A,B bX, we write A �µ B if AQB > NULLµ. This is clearly an equivalence
relation.

Definition 7.4. For a Borel measure µ, a set A b X is called µ-measurable if A �µ B for
some Borel set B. In this case, we will define µ�A� � µ�B�, and extend µ to be defined on
all measurable sets.

Clearly, µ-measurable subsets of X form a σ-algebra, which we denote by MEASµ�X�.
Definition 7.5. A subset A of a Polish space X is called universally measurable if it is
µ-measurable for every σ-finite Borel measure µ.

In this definition, due to σ-finiteness of µ, the set A is µ-measurable if and only if A9B is
µ-measurable for every µ-measurable subset B bX of finite µ-measure. This shows that we
can replace “σ-finite” by “probability” in the definition of universal measurability. In fact, it
is enough to consider continuous probability measures since probability measures can have
at most countably many atoms and countable sets are clearly universally measurable.
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It is clear that universally measurable subsets of X form a σ-algebra and we denote it by
MEAS�X�. By definition, Borel sets are universally measurable. How far can we push this?
The following is a non-trivial theorem, whose proof we omit here.

Theorem 7.6. Analytic (and hence also co-analytic) subsets of Polish spaces are universally
measurable.

This theorem might make one hopeful that perhaps all projective sets are universally
measurable. However, it turns out that already for Σ1

2 subsets of R the question of whether
they are Lebesgue measurable is independent from ZFC.

7.C. Isomorphism of continuous measures. Let �X,S�, �Y,P� two measurable spaces
and f � X � Y a measurable map. If µ is a measure on �X,S� then we write fµ for the
push-forward measure on �Y,P� defined by

fµ�B� � µ �f�1 �B�� .
The following theorem is the analogue of the Borel Isomorphism Theorem for measures,

and it says that there is only one, up to isomorphism, continuous Borel measure.

The Measure Isomorphism Theorem 7.7. Let X be a standard Borel space and let µ
be a continuous Borel probability measure on X. Then the measure space �X,µ� is Borel
isomorphic to ��0,1�, λ�, where λ is the Lebesgue measure on �0,1�; more precisely, there is
a Borel isomorphism f �X � �0,1� such that the push-forward measure fµ is equal to λ.

Proof. By the Borel Isomorphism Theorem, we can assume without loss of generality that
X � �0,1�. Consider the function

g � �0,1�� �0,1�, by g�x� � µ��0, x��.
It is immediate that g is increasing and continuous. Moreover, since g�0� � 0 and g�1� � 1 it
is also surjective. We claim that gµ � λ. To this end, let y > �0,1� and pick x > �0,1� so that
µ��0, x�� � y. We have that

gµ ��0, y�� � µ �g�1 ��0, y��� � µ��0, x�� � y.
Since gµ and λ agree on a family which generates the Borel sets, they must agree everywhere.
However, g may fail to be an injection. We proceed as follows: for every y > �0,1�, let Fy be
the closed interval g�1�y�. Let also

N � �y > �0,1� � Fy is non-degenerate� ,
and notice that N is countable since every non-degenerate interval contains a rational. Let
also M � �y>N Fy � g�1�N� and notice that gC�0,1��M is a homeomorphism between �0,1��M
and �0,1� �N .

Let Q ` �0,1� � N be any uncountable Borel set with λ�Q� � 0 and let P � g�1�Q�, so
µ�P � � 0. Fix a Borel isomorphism h � P 8M � Q8N and define the desired f � �0,1�� �0,1�
as follows

f�x� � � h�x� if x > P 8M
g�x� otherwise

.

�
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7.D. Abstract Boolean σ-algebras. Recall that for an a set X, A b P�X� is called an
algebra if it contains g and is closed under complements and finite unions. It is called a
σ-algebra if it is actually closed under countable unions.

Examples 7.8.

(a) In a topological space, clopen sets form an algebra, which in general is not a σ-algebra.

(b) In a measure space, measurable sets form a σ-algebra.

Also recall, that I b P�X� is called an ideal if it contains g, is closed downward under
b and is also closed under finite unions. It is called a σ-ideal if it is actually closed under
countable unions. Notions of “smallness” of sets most often correspond to ideals or even
σ-ideals.

Examples 7.9.

(a) In a topological space, nowhere dense sets form an ideal, which in general is not a σ-ideal.

(b) In a measure space, null sets form a σ-ideal.

Given an algebra A and an ideal I b A, we define an equivalence relation �I on A by
declaring, for A,B > A,

A �I B� AQB > I .

For A > A, we let �A�I denote the �I -equivalence class of A and let A~I denote the set of all
equivalence classes. Now technically, the quotient set A~I is no longer an algebra of subsets
of a set, but it is very much like an algebra, in the sense that �0�I behaves like g, and the
operations - and � defined by

�A�I - �B�I �� �A 8B�I , ��A�I �� �Ac�I ,
behave like union and complement, respectively. This motivates defining an abstract Boolean
algebra as a structure A � �A,0,-,��, where A is a set called the domain of A, 0 > A, -
is a binary operation called join and � is a unary operation called complement, and they
satisfy certain axioms that make this structure very similar to an actual algebra, with 0
corresponding to g, - to union and � to set-complement. For the precise statement of the
axioms, we refer to [Hal93]. Using 0,-,�, one can define further operations and a relation
as follows: for a, b > A,

a , b �� ����a� - ��b��, a � b �� a , ��b�, a B b �� a � b � 0,

where we refer to , as meet. The axioms of Boolean algebras ensure that B is a partial order
and intuitively it corresponds to b.

The axioms of Boolean algebras demand that vee is associative, which allows applications
of - to finite subsets of �an�n@k b A, that is: �n@k an �� a0 - �a1 - �...�...��. Extending this to
countable subsets, one can define an abstract Boolean σ-algebra by allowing applications of
- to countable subsets, i.e. having an operation �n>N called countable join that applies to
a countable collection of elements of A. We again refer to [Hal93] for the precise definition
and the theory of abstract Boolean σ-algebras.
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7.E. The measure algebra MALGµ. Let X be a standard Borel space and µ a Borel
measure on X. Recall that MEASµ�X� is a σ-algebra and NULLµ is a σ-ideal, so we have
the equivalence relation �NULLµ , which we will denote by �µ for short. We will also denote
by �A�µ (or simply �A�) the �µ-equivalence class of A > MEASµ�X�. We call the Boolean
σ-algebra

MALGµ�X� �� MEASµ�X�~NULLµ�X�,
the measure algebra of µ. For �A�, �B� > MALGµ, we define dµ��A�, �B�� �� µ�AQB�.
Theorem 7.10. For any Borel probability measure µ on X, the map dµ � MALGµ�X�� �0,1�
is a complete separable metric on MALGµ�X�.
Proof. To see that dµ is indeed a metric notice that µ�AQB� � R S1A�1B Sdµ and that L1�µ�
is a metric space.

To prove completeness and separability, we first assume without the loss of generality,
using Theorem 7.7, that �X,µ� is a disjoint union of ��0,1�, λ� and �K, δ̄�, λ is the Lebesgue
measure, K is a countable (possibly finite or empty) set, and δ̄ � Σk>Kckδk with ck A 0 for
every k >K.

Since a sequence ��An��n in MALGµ�X� is Cauchy if and only if both ��An9 �0,1���n and��An9K��n are Cauchy we can treat each case separately. Restricting to the countable part
(assuming X �K) notice that for every k >X since δ̄��k�� � ck A 0 there is n0 > N such that
for every n A n0 k > An if and only if k > An0 . From this observation we can define(and check
that it indeed is) the limit of ��An��n. For the continuous case, that is, �X,µ� � ��0,1�, λ�,
one checks that �A� �� ��n�iAnAi� is indeed the limit of �An�.

Separability for MALGµ�X� is obvious when X � K and for the case X � �0,1� notice
that the set of all �F �, where F is a finite union of intervals with rational endpoints, is a
countable dense subset of MALGµ�X�. �

Corollary 7.11. The space �MALGµ�X�, dµ� is Polish whenever X is Polish and µ is a
probability measure on X.

7.F. Point realizations of σ-homomorphisms. A map Φ � A � B between the domains
of the Boolean algebras A and B is a homomorphism if it respects -,� and maps 0A to
0B. If moreover Φ is bijective (and hence Φ�1 exists and is also a homomorphism), we say
that Φ is an isomorphism. An automorphism of A is an isomorphism between A and A. If
A,B are Boolean σ-algebras and Φ moreover respects the countable joins �n>N we call Φ a
σ-homomorphism. Similarly we define σ-isomorphism and σ-automorphism.

Examples 7.12.

(a) For concrete (σ-)algebras A b P�X�, B b P�Y � of subsets, one way to give rise to a
(σ-)homomorphism Φ � BtoA is via a measurable point-map ϕ � �X,A�� �Y,B�, which
allows for defining Φ�B� �� ϕ�1�B�, for B > B.

(b) Moreover, if I b A is a (σ-)ideal, then

Φ�
� B � A~I given by Φ��B� �� �ϕ�1�B��I

is still a (σ-)homomorphism;

(c) Furthermore, if J b B is a (σ-)ideal and φ has the property that ϕ�1�J � b I , then

Φ��
� B~J � A~I given by Φ����B�J � �� �ϕ�1�B��I
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is well-defined and still a (σ-)homomorphism.

(d) As an instance of the latter, letting �X,µ� be a standard Borel space with a Borel
measure µ, any Borel automorphism T of X that is µ-nonsingular, i.e. T �1�NULLµ� b
NULLµ, gives rise to an automorphism of MALGµ by �A�( �T �1�A��.

In all of the above examples, σ-homomorphisms arise from point-realizations, i.e. measur-
able maps from X to Y . The following theorem implies that all σ-homomorphisms of the
form B � A~I admit such point realizations.

Theorem 7.13 (Sikorski). Let �X,S� be a measurable space, I b S a σ-ideal, Y a non-
empty standard Borel space, and Φ � B�Y � � S~I a σ-homomorphism. Then, there is a
measurable map

ϕ � �X,S�� �Y,B�Y ��, such that Φ�B� � �ϕ�1�A��I , for every B > B�Y �.
Moreover, such ϕ is unique up to I, i.e. for any other ψ � �X,S�� �Y,B�Y �� with Φ�B� ��ψ�1�B��I , we have that �x >X � ϕ�x� x ψ�x�� > I.

Proof. By the Borel isomorphism theorem, we assume, without loss of generality, that Y ��0,1�.
For every p > �0,1� pick Bp > S so that Φ��0, p�� � �Bp�I , where we particularly put B1 ��X

(which we may since Φ��0,1�� � �X�I). A necessary condition that a potential ϕ � X � Y
should satisfy is the following: for each x >X,

ϕ�x� > �
p>�0,1�
x>Bp

�0, p�.
This leads us to defining ϕ�x� �� inf �p > �0,1� 9Q � x > Bp�. To see that ϕ is measurable
notice that

ϕ�1��0, a�� � �
p@a
p>Q

Bp.

Now let Φ� � B�Y �� S~I with Φ��B� �� �ϕ�1�B��I . To see that Φ� � Φ notice that

Φ��0, p�� � Φ��
q@p
q>Q

�0, q�� � ��
q@p
q>Q

Φ��0, q���I � ��
q@p
q>Q

Bq�I � Φ���0, p��.
Since Φ and Φ� agree on intervals of the form �0, p� with p > Q, they must be equal on all of
B��0,1�� because both are σ-homomorphisms and the σ-algebra generated by such intervals
is exactly B��0,1��.

To see that the map ϕ is unique let ψ another such map and assume towards a contradic-
tion that �x >X � ϕ�x� @ ψ�x�� ¶ I (and without loss of generality, we picked the following
direction of the inequality). But then,

�
q>Q9�0,1�

�x >X � ϕ�x� B q @ ψ�x�� ¶ I ,
so for some q > Q 9 �0,1�, �x >X � ϕ�x� B q @ ψ�x�� ¶ I , which contradicts

��x >X � ϕ�x� B q��I � �ϕ�1��0, q���I
� Φ��0, q��
� �ψ�1��0, q���I � ��x >X � ψ�x� B q��I .

�
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Corollary 7.14. Let X,Y be standard Borel spaces, and I b B�X�,J b B�Y � be σ-ideals. A
map Φ � B�X�~I � B�Y �~J is a σ-isomorphism if and only if there is a Borel isomorphism
ϕ � Y � �X �, where Y � �J Y and X � �I X, such that Φ��A�I� � �φ�1�A��J for all A > B�X�.
Moreover, if both I and J contain uncountable sets, then X � and Y � can be taken to be X
and Y , respectively.

Proof. Let ϕ � Y � X and ψ � X � Y be Borel maps such that Φ�A� � �ϕ�1�A��J and
Φ�1�B� � �ψ�1�B��I . Then Φ XΦ�1 has ψ Xϕ as a point realization and similarly Φ�1 XΦ has
ϕ Xψ as a point realization. So by the uniqueness in Theorem 7.13, we get that ψ Xϕ �J idY
and ϕ X ψ �I idX . �

Taking X � Y and I � J � NULLµ for a Borel measure µ on X, this corollary gives that
any automorphism of MALGµ arises from a µ-nonsingular Borel automorphism of �X,µ�.

8. Baire category

8.A. Nowhere dense sets. Let X be a topological space. A set A bX is said to be dense
in B bX if A 9B is dense in B.

Definition 8.1. Let X be a topological space. A set A b X is called nowhere dense if
there is no nonempty open set U bX in which A is dense.

Proposition 8.2. Let X be a topological space and A bX. The following are equivalent:

(1) A is nowhere dense;
(2) A misses a nonempty open subset of every nonempty open set (i.e. for every open set

U x g there is a nonempty open subset V b U such that A 9 V � g);
(3) The closure A has empty interior.

Proof. Follows from definitions. �

Proposition 8.3. Let X be a topological space and A,U bX.

(a) A is nowhere dense if and only if A is nowhere dense.
(b) If U is open, then ∂U �� U �U is closed nowhere dense.
(c) If U is open dense, then U c is closed nowhere dense.
(d) Nowhere dense subsets of X form an ideal4.

Proof. Part (a) immediately follows from (2) of Proposition 8.2. For (b) note that ∂U is
disjoint from U so its interior cannot be nonempty. Since it is also closed, it is nowhere
dense by (2) of Proposition 8.2, again. As for part (c), it follows directly from (b) because
by the density of U , ∂U � U c. Finally, we leave part (d) as an easy exercise. �

For example, the Cantor set is nowhere dense in �0,1� because it is closed and has empty
interior. Also, any compact set K is nowhere dense in N because it is closed and the
corresponding tree TK b N@N is finitely branching.

4An ideal on a set X is a collection of subsets of X containing g and closed under subsets and finite
unions.
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8.B. Meager sets.

Definition 8.4. Let X be a topological space. A set A b X is meager if it is a countable
union of nowhere dense sets. The complement of a meager set is called comeager.

Note that the family MGR�X� of meager subsets of X is a σ-ideal5 on X; in fact, it is
precisely the σ-ideal generated by nowhere dense sets. Consequently, comeager sets form a
countably closed filter6 on X.

An example of a meager set is any σ-compact set is in N . Also, any countable set in a
nonempty perfect space is meager, so, for example, Q is meager in R.

Meager sets often have properties analogous to those enjoyed by the null sets in Rn (with
respect to the Lebesgue measure). The following proposition lists some of them.

Proposition 8.5. Let X be a topological space and A bX.

(a) A is meager if and only if it is contained in a countable union of closed nowhere dense
sets. In particular, every meager set is contained in a meager Fσ set.

(b) A is comeager if and only if it contains a countable intersection of open dense sets. In
particular, dense Gδ sets are comeager.

Proof. Part (b) follows from (a) by taking complements, and part (a) follows directly from
the corresponding property of nowhere dense sets proved above. �

Remark 8.6. Part (b) of the above proposition provides a method of proving that a given
set is comeager by showing that it is dense Gδ or that it contains a dense Gδ subset.

As an application of some of the statements above, we record the following random fact.

Proposition 8.7. Every second countable space X contains a dense Gδ (hence comeager)
subset Y that is zero-dimensional in the relative topology.

Proof. Indeed, if �Un�n>N is a basis for X, then F � �n�Un�Un� is meager Fσ and Y �X �F
is zero-dimensional. �

8.C. Relativization of nowhere dense and meager. Let X be a topological space and
P be a property of subsets of X (e.g. open, closed, compact, nowhere dense, meager). We
say that property P is absolute between subspaces if for every subspace Y b X and A b Y ,
A has property P as a subset of Y iff it has property P as a subset of X. An example of
a property that is absolute between subspaces is compactness (why?), but I can’t think of
any other absolute property. It is clear that properties like open or closed are not absolute.
Furthermore, nowhere dense is not absolute: let X � R and A � Y � �0�. Now A is clearly
nowhere dense in R but in Y all of a sudden it is, in fact, open, and hence not nowhere
dense. Thus being nowhere dense does not transfer downward (from a bigger space to a
smaller subspace); same goes for meager. However, the following proposition shows that it
transfers upward and that it is absolute between open subspaces.

Proposition 8.8. Let X be a topological space, Y bX be a subspace and A b Y .

(a) If A is nowhere dense (resp. meager) in Y , it is still nowhere dense (resp. meager) in
X.

5An σ-ideal on a set X is an ideal that is closed under countable unions.
6A filter on a set X is the dual to an ideal on X, more precisely, it is a collection of subsets of X containing

X and closed under supersets and finite intersections. If moreover, it is closed under countable intersections,
we say that it is countably closed.
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(b) If Y is open, then A is nowhere dense (resp. meager) in Y iff it is nowhere dense (resp.
meager) in X.

Proof. Straightforward, using (2) of Proposition 8.2. �

8.D. Baire spaces. Being a σ-ideal is a characteristic property of many notions of “small-
ness” of sets, such as being countable, having measure 0, etc, and meager is one of them.
However, it is possible that a topological space X is such that X itself is meager, so the
σ-ideal of meager sets trivializes, i.e. is equal to P�X�. The following definition isolates a
class of spaces where this doesn’t happen.

Definition 8.9. A topological space is said to be Baire if every nonempty open set is non-
meager.

Proposition 8.10. Let X be a topological space. The following are equivalent:

(1) X is a Baire space, i.e. every nonempty open set is non-meager.
(2) Every comeager set is dense.
(3) The intersection of countably many dense open sets is dense.

Proof. For �1� � �2�, note that a nonempty open set is nonmeager if and only if every
comeager set meets it. The equivalence �2�� �3� follows directly from (b) of Proposition 8.5.

�

As mentioned above, in any topological space, dense Gδ sets are comeager. Moreover, by
the last proposition, we have that in Baire spaces any comeager set contains a dense Gδ set.
So we get:

Corollary 8.11. In Baire spaces, a set is comeager if and only if it contains a dense Gδ set.

Proposition 8.12. If X is a Baire space and U bX is open, then U is a Baire space.

Proof. Follows from (b) of Proposition 8.8. �

Baire Category Theorem 8.13. Every completely metrizable space is Baire. Every locally
compact Hausdorff space is Baire.

Proof. We will only prove for completely metrizable spaces and leave the locally compact
Hausdorff case as an exercise. Let �X,d� be a complete metric space and let �Un�n>N be
dense open. Let U be nonempty open and we show that �nUn 9 U x g. Put V0 � U and
since U0 9 V0 x g, there is a nonempty open set V1 of diameter @ 1 such that V 1 b U0 9 V0.
Similarly, since U1 9 V1 x g, there is a nonempty open set V2 of diameter @ 1~2 such that
V 2 b U1 9V1, etc. Thus there is a decreasing sequence �V n�nC1 of nonempty closed sets with
vanishing diameter (diam�Vn� @ 1~n) and such that V n b Un 9U . By the completeness of X,

�n V n is nonempty (is, in fact, a singleton) and hence so is �nUn 9U . �

Thus, Polish spaces are Baire and hence comeager sets in them are “truly large”, i.e. they
are not meager! This immediately gives:

Corollary 8.14. In Polish spaces, dense meager sets are not Gδ. In particular, Q is not a
Gδ subset of R.

Proof. If a subset is dense Gδ, then it is comeager, and hence nonmeager. �
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Definition 8.15. Let X be a topological space and P b X. If P is comeager, we say that
P holds generically or that the generic element of X is in P . (Sometimes the word typical
is used instead of generic.)

In a nonempty Baire space X, if P b X holds generically, then, in particular, P x g.
This leads to a well-known method of existence proofs in mathematics: in order to show
that a given set P b X is nonempty, where X is a nonempty Baire space, it is enough to
show that P holds generically. Although the latter task seems harder, the proofs are often
simpler since having a notion of largeness (like non-meager, uncountable, positive measure)
allows using pigeon hole principles and counting, whereas constructing a concrete object
in P is often complicated. The first example of this phenomenon was due to Cantor who
proved the existence of transcendental numbers by showing that there are only countably
many algebraic ones, whereas reals are uncountable, and hence, “most” real numbers are
transcendental. Although the existence of transcendental numbers was proved by Liouville
before Cantor, the simplicity of Cantor’s proof and the apparent power of the idea of counting
successfully “sold” Set Theory to the mathematical community.

8.E. The Baire property. Let I be a σ-ideal on a set X. For A,B bX, we say that A and
B are equal modulo I , noted A �I B, if the symmetric difference A∆B � �A�B�8�B �A� >
I . This is clearly an equivalence relation that respects complementation and countable
unions/intersections.

In the particular case where I is the σ-ideal of meager sets of a topological space, we write
A �� B if A, B are equal modulo a meager set.

Definition 8.16. Let X be a topological space. A set A b X has the Baire property (BP)
if A �� U for some open set U bX.

For a topological space X, let BP�X� denote the collection of all subsets of X with the
BP.

Proposition 8.17. BP�X� is a σ-algebra on X. In fact, it is the smallest σ-algebra con-
taining all open sets and all meager sets.

Proof. The second assertion follows from the first and the fact that any set A > BP�X� can
be written as A � U∆M , where U is open and M is meager.

For the first assertion, we start by noting that if U is open, then U � U is closed and
nowhere dense, so U �� U . Taking complements, we see that if F is closed, F � Int�F � is
closed nowhere dense, so F �� Int�F �, and hence closed sets have the BP. This implies that
BP is closed under complements because if A has the BP, then A �� U for some open U , and
thus Ac �� U c �� Int�U c�, so Ac has the BP. Finally, if each An has the BP, say An �� Un
with Un open, then �nAn �� �nUn, so �nAn has the BP. �

In particular, all open, closed, Fσ, Gδ, and in general, all Borel sets, have the BP. How
far can we push this? The following is a non-trivial theorem, whose proof we omit here.

Theorem 8.18. Analytic (and hence also co-analytic) subsets of Polish spaces have the BP.

This theorem might make one hopeful that perhaps all projective sets have the BP. How-
ever, it turns out that already for Σ1

2 sets whether or not the BP holds is independent from
ZFC.
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Proposition 8.19. Let X be a topological space and A bX. Then the following are equiva-
lent:

(1) A has the BP;
(2) A � G 8M , where G is Gδ and M is meager;
(3) A � F �M , where F is Fσ and M is meager.

Proof. Follows the fact every meager set is contained in a meager Fσ set (see Proposition 8.5).
�

Definition 8.20. For topological spaces X,Y , a function f �X � Y is called Baire measur-
able if the preimage of every open set has the BP.

Proposition 8.21. Let X,Y be topological space and suppose Y is second countable. Then
any Baire measurable function f � X � Y is continuous on a comeager set, i.e. there is a
comeager set D bX such that fCD �D � Y is continuous.

Proof. Let �Vn�n>N be a countable basis for Y . Because f is Baire measurable, f�1�Vn� �� Un
for some open set Un bX. Put Mn � f�1�Vn�∆Un and let D �X ��nMn. Now to show that
fCD is continuous, it is enough to check that for each n, �fCD��1�Vn� � Un9D. For this, just
note that �fCD��1�Vn� � f�1�Vn�9D, and since Mn9D � g, we have f�1�Vn�9D � Un9D. �

8.F. Localization. Recall that nonempty open subsets of Baire spaces are Baire themselves
in the relative topology and all of the notions of category are absolute when relativizing to
an open subset. This allows us to localize the notions of category to open sets.

Definition 8.22. Let X be a topological space and U b X an open set. We say that A is
meager in U if A 9 U is meager in X7 and A is comeager in U if U �A is meager. If A is
comeager in U , we say that A holds generically in U or that U is a �-subset of A, in symbols
U b� A8.

Thus, A is comeager iff X b� A. We now have the following simple fact that will be used
over and over in our arguments below.

Proposition 8.23 (Baire alternative). Let A be a set with the BP in a topological space X.
Then either A is meager or U b� A for some nonempty open U b X9. If X is Baire, then
exactly one of these alternatives holds.

Proof. By the BP, A �� U for some open U . If U � g, then A is meager; otherwise, U x g
and U b� A. �

8.G. The Kuratowski–Ulam theorem. In this subsection we state without proof an
analog of Fubini’s theorem for Baire category. We start by fixing a convenient notation.

Let X be a topological space. For a set A bX and x >X, we put

A�x� 
� x > A,

7This is equivalent to A 9U being meager relative to U .
8The more set-theoretic terminology is that U forces A and it is denoted by U è A.
9Both alternatives can hold if the space X is not Baire.
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viewing A as a property of elements of X and writing A�x� to mean that x has this property.
We also use the following notation:

¦
�xA�x� 
� A is comeager,

§
�xA�x� 
� A is non-meager.

We read ¦� as “for comeager many” x, and §� as “for non-meager many” x.
Similarly, for U bX open, we write

¦
�x > UA�x� 
� A is comeager in U,

§
�x > UA�x� 
� A is non-meager in U.

Thus, denoting the negation by  , we have:

 ¦
�x > UA�x� 
� §

�x > UAc�x�.
Recall that for arbitrary topological spaces X �Y , the projection function projX �X �Y �

X defined by �x, y�( x is continuous and open (images of open sets are open). Conversely,
for every y > Y , the function X � X � Y defined by x ( �x, y� is also continuous and open,
and hence an embedding.

Theorem 8.24 (Kuratowski–Ulam). Let X,Y be second countable topological spaces. Let
A bX � Y have the BP, and denote Ax � �y > Y � A�x, y��, Ay � �x >X � A�x, y��.

(i) ¦�x�Ax has the BP in Y �. Similarly, ¦�y�Ay has the BP in X�.
(ii) A is meager 
� ¦�x�Ax is meager� 
� ¦�y�Ay is meager�.

(iii) A is comeager 
� ¦�x�Ax is comeager� 
� ¦�y�Ay is comeager�. In symbols:

¦
��x, y�A�x, y� 
� ¦

�x¦�yA�x, y� 
� ¦
�y¦�xA�x, y�.

The Kuratowski–Ulam theorem fails if A does not have the BP. For example, using AC,
one can construct a non-meager set A b R2 so that no three points of A are on a straight
line.

8.H. Generically ergodic group actions. Let X be a topological space and let G be a
group acting on X by homeomorphisms, i.e. each g > G is a homeomorphism of X. A subset
A b X is called invariant if it is closed under the action, i.e. G �A � A; equivalently, A is a
union of orbits. For a set A b X, the saturation of A, noted �A�G, is the smallest invariant
subset containing A; equivalently, �A�G �� G �A � �g>G gA.

Definition 8.25. The action G ¸ X is called generically ergodic if every invariant subset
with the BP is either meager or comeager.

In other words, generic ergodicity means that the action is topologically irreducible/atomic.

Theorem 8.26 (The first topological 0�1 law). Let X be a Baire space and let G be a group
acting on X by homeomorphisms. The following are equivalent:

�1� G¸X is generically ergodic.�2� Every invariant nonempty open set is dense.�3� (Homogeneity) For any nonempty open sets U,V bX, there is g > G such that g�U�9V x
g.

If X is second countable, then we have two more equivalent conditions:
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�4� For comeager-many x >X, the orbit of x is dense.�5� There is a dense orbit.

Proof. �1�� �2�� �3�: Trivial.�3�� �1�: Let A bX be an invariant set with the BP and suppose towards a contradiction
that both A,Ac are non-meager. Then, by the Baire alternative, there are nonempty open
sets U,V b X with U b� A and V b� B. Taking g > G with W �� gU 9 V x g, we see that
W b� A and W b� Ac, so W b� g, which means that W is meager, contradiction X being
Baire.�2�� �4�: Let �Un�n be a countable basis for X. The saturation �Un�G of each Un is open
because �Un�G � �g>G gUn, so by �2�, �Un�G is dense. Therefore, X � �� �n�Un�G is comeager
being dense Gδ; moreover, X � is invariant. Now for any x >X, and any n > N,

�x�G 9Un x g 
� x > �Un�G,
so if x >X �, then the orbit �x�G meets every basic open set Un.�4�� �5�: Follows because X is Baire.�5�� �3�: Straightforward from the definitions. �
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Part 4. Appendix on equivalence relations and Polish
group actions

For the past twenty five years, a major focus of descriptive set theory has been the study
of equivalence relations on Polish spaces that are definable when viewed as sets of pairs (e.g.
orbit equivalence relations of continuous actions of Polish groups are analytic). This study
is motivated by foundational questions such as understanding the nature of classification
of mathematical objects (measure-preserving automorphisms, unitary operators, Riemann
surfaces, etc.) up to some notion of equivalence (isomorphism, conjugacy, conformal equiv-
alence, etc.), and creating a mathematical framework for measuring the complexity of such
classification problems. Due to its broad scope, it has natural interactions with other areas
of mathematics, such as ergodic theory and topological dynamics, functional analysis and
operator algebras, representation theory, topology, model theory, etc.

The following definition makes precise what it means for one classification problem to be
easier (not harder) than another.
Definition. Let E and F be equivalence relations on Polish spaces X and Y , respectively.
We say that E is Borel reducible to F and write E BB F if there is a Borel map f � X � Y
such that for all x0, x1 >X, x0Ex1 
� f�x0�Ff�x1�.

We call E smooth (or concretely classifiable) if it Borel reduces to the identity relation
id�X� on some (any) Polish space X (note that such E is automatically Borel). An example
of such an equivalence relation is the similarity relation of matrices; indeed, if J�A� denotes

the Jordan canonical form of a matrix A > Rn2

, then for A,B > Rn2

, we have A � B 
�

J�A� � J�B�. It is not hard to check that the computation of J�A� is Borel, so J � Rn2

� Rn2

is a Borel reduction of � to id�Rn2�, and hence � is smooth. Another (much more involved)
example is the isomorphism of Bernoulli shifts, which, by Ornstein’s famous theorem, is
reduced to the equality on R by the map assigning to each Bernoulli shift its entropy.

However, many equivalence relations that appear in mathematics are nonsmooth. For
example, the Vitali equivalence relation Ev on �0,1� defined by xEvy 
� x � y > Q can be
easily shown to be nonsmooth using measure-theoretic or Baire category arguments. The
following theorem (known as the General Glimm–Effros dichotomy, see [HKL90]) shows that
in fact containing Ev is the only obstruction to smoothness:

Theorem (Harrington–Kechris–Louveau ’90). Let E be a Borel equivalence relation on a
Polish space X. Then either E is smooth, or else Ev ZB E.10

This was one of the first major victories of descriptive set theory in the study of equiv-
alence relations. It in particular implies that Ev is the easiest among all nonsmooth Borel
equivalence relations in the sense of Borel reducibility. Besides its foundational importance
in the theory of Borel equivalence relations, it also generalized earlier important results of
Glimm and Effros. By now, many other dichotomy theorems have been proved and general

10Here, ZB means that there is an injective Borel reduction.
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methods of placing a given equivalence relation among others in the Borel reducibility hi-
erarchy have been developed. However, there are still many fascinating open problems left
and the Borel reducibility hierarchy is yet to be explored.

9. Examples of equivalence relations and Polish group actions

9.A. Equivalence relations. Let X denote a Polish space. We start by listing some famil-
iar examples of equivalence relations that appear in various areas of mathematics.

Examples 9.1.

(a) The identity (equality) relation Id�X� on X is a closed equivalence relation.

(b) The Vitali equivalence relation Ev on �0,1�, defined by xEvy 
� x � y > Q, is clearly
an Fσ equivalence relation.

(c) Define the equivalence relation E0�X� on XN of eventual equality of sequences, namely:
for x, y > XN, xE0�X�y� ¦ªn�x�n� � y�n��. This is again an Fσ equivalence relation.
Important special cases when X � 2, i.e. XN � C, and when X �N . In the first case we
simply write E0 �� E0�2� and in the second case we write E1 �� E0�N �.

(d) The similarity relation � of matrices on the space Mn�C� of n � n matrices: for A,B >
Mn�C�, A � B � §Q > GLn�C� QAQ�1 � B. By definition, this is an analytic equiva-
lence relation, but we will see below that it is actually Borel.

(e) Consider the following subgroups of RN under addition:
Y `p � �x > RN � Pn Sx�n�Sp @ª�, for 1 B p @ª,
Y `ª � �x > RN � supn Sx�n�S @ª�,
Y c0 � �x > RN � limn x�n� � 0�.
The first two are Fσ subsets of RN and the last is Π0

3. Thus, if I is one of these
subgroups, then the equivalence relation EI on RN, defined by

xEIy� x � y > I ,

is Fσ for I � `p, 1 B p Bª, and is Π0
3 for I � c0.

(f) Fix a countable first-order relational language L � �Ri�i>N, where Ri is a relation symbol
of arity ni. The set of countable L-structures can be turned into a Polish space by fixing
their underlying set to be N and, for each i, identifying the interpretation of Ri (i.e. a
relation on Nni) with its characteristic function. Such a structure is simply an element
of XL �� Li>N 2N

ni . This allows talking about the Polish spaces of countable orderings
and countable graphs, for example. Also, because any first-order language can be turned
into a relational language by replacing function symbols with relation symbols for their
graphs, we can also consider Polish spaces of countable groups, rings, fields, etc.

Thus, isomorphism of countable L-structures, denoted by �L, naturally falls into the
framework of descriptive set theory as it is an analytic equivalence relation on XL;
indeed, two structures are isomorphic if and only if there exists a certain bijection f
from N to N, i.e. a certain element f >N .
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9.B. Polish groups. Many natural analytic equivalence relations arise as orbit equivalence
relations of continuous (or Borel) actions of Polish groups.

Definition 9.2. A topological group is a group with a topology on it so that group multi-
plication �x, y� � xy and inverse x � x�1 are continuous functions. Such a group is called
Polish if its topology happens to be Polish.

Here are some important examples of Polish groups.

Examples 9.3.

(a) All countable groups with the discrete topology are Polish. In fact, it is an exercise to
show that the only Polish topology on a countable group is the discrete topology.

(b) The unit circle S1 b C is a Polish group under multiplication.

(c) Rn,RN, �Z~2Z�N are Polish groups under coordinatewise addition (note that the latter
is just the Cantor space C).

(d) The group Sª of permutations of N (i.e. bijections from N to N) is a Gδ subset of N ,
so is a Polish group with the relative topology.

(e) The automorphisms group Aut�µ� of a standard probability space �X,µ� (our main
hero) is a Polish group in the weak topology. See Subsection 1.B for details.

(f) The group U�H� of unitary automorphisms of a separable Hilbert space H is a Polish
group in the strong (equivalently weak) operator topology. See Subsection 1.C for details.

9.C. Actions of Polish groups.

Definition 9.4. Let G be a Polish group and X be a Polish space. An action a � G¸X of
G on X is said to be continuous (resp. Borel) if the action function a � G �X �X given by�g, x�( g �a x is continuous (resp. Borel).

We denote by EG (or sometimes by Ea) the orbit equivalence relation induced by such an
action. Note that EG is analytic because for x, y >X,

xEGy 
� §g > G�g �a x � y�.
Here we list some examples of continuous actions of Polish groups.

Examples 9.5.

(a) Any Polish group acts on itself by left multiplication, as well as by conjugation. It
follows from the definition of topological groups that these actions are continuous.

(b) Let G be a Polish group and H @ G be a Polish (equivalently, closed) subgroup. The left
multiplication action of H on G is clearly continuous and the induced orbit equivalence
relation EH is the relation of being in the same left H-coset, i.e. xEHy � Hx � Hy.
We refer to EH as the H-coset equivalence relation.

(c) The Vitali equivalence relation Ev is exactly the orbit equivalence relation of the trans-
lation action of Q on R.
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(d) The relation E0 of eventual equality on 2N is induced by a continuous action of a count-
able group as follows: for s, t > N@N with SsS � StS, let φs,t �X �X be defined as follows:

φs,t�x� �
¢̈̈̈
¦̈̈̈
¤
t�y if x � s�y
s�y if x � t�y
x otherwise

,

and let G be the group generated by �φs,t � s, t > N@N, SsS � StS�. It is clear that each φs,t
is a homeomorphism of X and EG � E0.

One can also show that after throwing away two orbits (more precisely, restricting E0

to X � �x > 2N � x has infinitely many 0-s and 1-s�), we can realize E0 by a continuous
action of Z. We leave this as an exercise.

(e) Irrational rotation of S1 is simply an action Z ¸ S1, where 1 > Z acts as multiplication
by eαπi, for some irrational α > R. Clearly this action is continuous and we denote the
orbit equivalence relation by Eα.

(f) The similarity relation � of matrices in Mn�R� is induced as the orbit equivalence relation
of the conjugation action of GLn�R� on Mn�R�.

(g) For a first-order relational language L, the group Sª admits a natural action on the Pol-
ish space XL of countable L-structures by permuting their underlying sets. Clearly, the
induced orbit equivalence relation is exactly the relation of isomorphism of L-structures.

(h) For a standard probability space �X,µ�, one can easily verify that the natural action of
Aut�X,µ� on �X,µ� is continuous.

(i) Similarly, for a separable Hilbert space H, the natural action of U�H� on H is contin-
uous.

10. Borel reducibility

Let E and F be equivalence relations on Polish spacesX and Y , respectively. The following
defines the class of functions from X to Y that induce functions from X~E to Y ~F .

Definition 10.1. A function f � X � Y is called a homomorphism from E to F if for all
x0, x1 >X,

x0Ex1 � f�x0�Ff�x1�.
f �X � Y is called a reduction of E to F if for all x0, x1 >X,

x0Ex1 � f�x0�Ff�x1�.
Note that reductions induce injections X~E 0 Y ~F .

The following makes it precise what it means for a classification problem in mathematics
to be easier (not harder) than another classification problem:

Definition 10.2. Let E and F be equivalence relations on Polish spaces X and Y , respec-
tively. We say that E is Borel reducible to F , and write E BB F , if there is a Borel reduction
of E to F . Furthermore, we say that E is strictly below F , and write E @B F , if E BB F
but F ºB E.
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The choice of “Borel” as the regularity condition on the reduction is mainly because any
two uncountable Polish spaces are Borel isomorphic, so the existence of Borel reductions
does not depend on the particular choice of the underlying Polish spaces and it only depends
on the inherent complexity of the equivalence relations, which is what we want to measure.

We replace the superscript B in BB by c if there is a continuous reduction, and we write
Z instead of B if the reduction is injective.

It is clear that BB is a quasi-order11 on the class of all equivalence relations on Polish
spaces12. We call E and F Borel bireducible, and write E �B F , if E BB F and F BB E.
Since Borel reductions induce Borel embeddings X~E 0 Y ~E, we refer to the bireducibility
class of E as the Borel cardinality of X~E.

We also call E and F Borel isomorphic, and write E �B F , if there is a bijective Borel
reduction (thus a Borel isomorphism from X to Y ) of E to F .

Remark 10.3. In general, E ZB F and F ZB E does not imply E �B F ; more precisely, the
Schröder–Bernstein argument doesn’t work unless both reductions are “locally surjective
on classes”. The latter means that the Borel reduction f � X � Y has the property that
for every x > X, f��x�E� is an entire F -class, i.e. f��x�E� � �f�x��F . Indeed, imagine a
situation of having injective Borel reductions f � X 0 Y and g � Y 0 X of E to F and F to
E, respectively, such that for some x >X, �x�E 9g�Y � � g and f��x�E� ø �f�x��F . Then, the
Schröder–Bernstein argument would map the elements of �x�E by f into �f�x��F and the
elements in �f�x��F � f��x�E� by g into �g�f�x���E. But �g�f�x���E x �x�E because �x�E is
disjoint from �g�Y ��F , so the elements in f��x�E� would go to a different E-class (namely,�x�E) than the elements in �f�x��F � f��x�E�, and hence, the resulting map will not be a
reduction.

The systematic study of the Borel reducibility hierarchy of definable equivalence relations
is sometimes referred to as invariant descriptive set theory. It was pioneered by Silver,
Harrington, Kechris, Louveau, and others, in the late ’80s and early ’90s. The goal of
invariant descriptive set thoery is to understand the Borel reducibility hierarchy (and hence,
the complexity of classification problems that appear in many areas of mathematics such
as analysis, ergodic theory, operator algebras, model theory, recursion theory, etc.), and
to develop methods for placing a given equivalence relation into its “correct” spot in this
hierarchy.

11. Concrete classifiability (smoothness)

In this section we make it precise what it means to classify mathematical objects (matrices,
measure-preserving transformations, unitary operators, Riemann surfaces, etc.) up to some
notion of equivalence (isomorphism, conjugacy, conformal equivalence, etc.). We will consider
some examples and nonexamples, as well as discuss related (famous) dichotomy theorems.

11.A. Definitions.

Definition 11.1. An equivalence relation E on a Polish space X is called concretely classi-
fiable (or smooth) if E BB Id�R�. By the Borel isomorphism theorem, R can be replaced by
any other Polish space.

11Quasi-order is a reflexive and transitive relation, not necessarily antisymmetric.
12This is actually a set if we fix a particular uncountable Polish space, which we can do as any two of

them are Borel isomorphic.
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Note that smooth equivalence relations are necessarily Borel : indeed, if f � X � R is a
Borel reduction of E to Id�R�, then the function f2 � X2 � R2 by �x, y� ( �f�x�, f�y�� is
Borel and E � f�1

2 �∆R�, where ∆R is the diagonal in R2. But ∆R is closed in R2, so E is
Borel being a preimage of Borel.

A special case of smoothness is when we can select a canonical representative from each
equivalence class.

Definition 11.2. Let E be an equivalence relation on a Polish space X. A map s � X � X
is called a selector for E if for all x >X, s�x� > �x�E, and s is a reduction of E to Id�X�, i.e.
xEy � s�x� � s�y�. A set Y b X is called a transversal for E if it meets every E-class at
exactly one point, i.e. for each x >X, �x�E 9 Y is a singleton.

Proposition 11.3. An equivalence relation E on a Polish space X admits a Borel selector
if and only if it admits an analytic transversal.13

Proof. If s � X � X is a Borel selector for E, then it is clear that s�X� is an analytic
transversal. For the converse, let Y b X be an analytic transversal and define s � X � X
by x ( the unique y > Y with xEy. To prove that s is Borel, we fix a Borel set B b X and
show that s�1�B� is Borel. Note that s�1�B� � �B 9 Y �E and hence is analytic. But also�s�1�B��c � s�1�Bc� � �Bc9Y �E, so �s�1�B��c is also analytic, and thus s�1�B� is Borel. �

Thus, the chain of implications for general equivalence relations is as follows:

Borel transversal � analytic transversal � Borel selector � smooth.

Concerning the reverse direction of the first implication, we have the following:

Proposition 11.4. For orbit equivalence relations of Borel actions of Polish groups, any
analytic transversal is actually Borel.

Proof. Let G¸X be a Borel action of a Polish group G on a Polish space X, and let Y bX
be an analytic transversal for EG. Then, for x >X,

x ¶ Y 
� §g > G �gx > Y and gx x x�,
so Y c is analytic as well, and hence Y is Borel. �

As for the implication “Borel selector � smooth”, it is a theorem of Burgess that the
reverse implication is also true for the orbit equivalence relations of continuous actions of
Polish groups.

11.B. Examples of concrete classification. We start by listing some well known ex-
amples of equivalence relations from different areas of mathematics that admit concrete
classification.

Examples 11.5.

(a) Isomorphism of finitely generated abelian groups. Let Lg � ��,1� be the language of
groups. Then the set Y b XLg of all finitely generated abelian groups is Σ0

3 (§ finitely
many elements such that ¦ group elements γ § a combination equal to γ), and hence
standard Borel. We know from algebra that every Γ > Y is isomorphic to a group of the
form Zn>Zq1>Zq2> ...>Zqk , where q1 B q2 B ... B qk are powers of primes. The map

13Thanks to Aristotelis Panagiotopoulos for pointing out that assuming the existence of a merely analytic
transversal still implies the existence of a Borel selector.
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Γ( Zn>Zq1>Zq2> ...>Zqk from Y to Y is a selector for Iso�Y � and it can be shown
to be Borel, witnessing the smoothness of Iso�Y �.

(b) Similarity of matrices. Let Mn�C� denote the Polish space of complex n � n matrices
and � denote the similarity relation on Mn�C�, which is Σ1

1 by definition. For each
A > Mn�C�, let J�A� denote its Jordan canonical form. We know from linear algebra
that A � B � J�A� � J�B�, in other words, J is a selector for �. Moreover, one can
show that it is Borel, so � is smooth. In particular, � is a Borel equivalence relation,
which wasn’t apparent at all from its definition.

(c) Isomorphism of Bernoulli shifts. Let �X,µ� be a probability space (X can be finite)
and let µZ denote the product measure on XZ. Let S � XZ � XZ denote the shift
automorphism, i.e. for f > XZ and n > Z, T �f��n� � f�n � 1�. The dynamical system�XZ, µZ, S� is called a Bernoulli shift. By the measure isomorphism theorem, every
Bernoulli shift is isomorphic to ��0,1�, λ, T �, where λ is the Lebesgue measure and
T some measure-preserving automorphism of ��0,1�, λ�. In this case, we would call
T a Bernoulli shift as well, and let B b Aut��0,1�, λ� be the set of all Bernoulli shifts.
Ornstein showed that B is a Borel subset of Aut��0,1�, λ�, and hence is a standard Borel
space. Furthermore, to each T > Aut��0,1�, λ�, one can attach a real number e�T � > R8�ª� called the entropy of the dynamical system ��0,1�, λ, T �, which somehow measures
the probabilistic unpredictability of the action of T . This notion of entropy is defined by
Kolmogorov and it follows from the definition that it is an isomorphism invariant. For the
Bernoulli shifts however (i.e. T > B), it is a celebrated theorem of Ornstein that entropy
is a complete invariant! In other words, for T1, T2 > B, ��0,1�, λ, T1� � ��0,1�, λ, T2��
e�T1� � e�T2�. It can also be checked that the function T ( e�T � is Borel, hence a Borel
reduction of the isomorphism relation of Bernoulli shifts to Id�R8�ª��, witnessing the
smoothness of the former.

11.C. Nonsmooth equivalence relations.

Definition 11.6. An equivalence relation E on a Polish space X (resp. measure space�X,B, µ�) is called generically ergodic (resp. µ-ergodic) if every invariant subset of X with
the BP (resp. µ-measurable) is either meager (resp. µ-null) or comeager (resp. µ-conull).

We call a (continuous or measurable) group action G ¸ X generically ergodic (resp. µ-
ergodic) if such is the induced orbit equivalence relation EG.

Proposition 11.7. Let E be an equivalence relation on a Polish space X and let f �X � 2N

be a Baire measurable homomorphism of E to Id�2N�. If E is generically ergodic, then there
is y > 2N such that f�1�y� is comeager. Letting µ be a Borel measure on X, the analogous
statement holds for µ-ergodic E.

Proof. We only prove the topological statement since the proof of the measure-theoretic
statement is analogous. First note that for any A b 2N, f�1�A� is E-invariant by the virtue
of f being a homomorphism. By recursion on n, we now define an increasing sequence�sn�n b 2@N such that SsnS � n and f�1�Nsn� is comeager. Put s0 � g, and suppose sn is
defined and satisfies the requirements. Since f�1�Nsn� � f�1�Nsn�0�8f�1�Nsn�1�, for at least
one i > �0,1�, f�1�Nsn�i� must be nonmeager, and hence comeager because f�1�Nsn�i� is
invariant and has the BP. Set sn�1 � sn�i. Having finished the construction of �sn�n, put
y � �n sn. Then f�1�y� � f�1��nNsn� � �n f�1�Nsn� is comeager. �
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Corollary 11.8. Let E be an equivalence relation on a Polish space X. If E is generically
ergodic (resp. ergodic) and every E-class is meager, then E is not smooth. Letting µ be a
nontrivial Borel measure on X, the analogous statement holds for µ-ergodic E.

Proof. If f � X � 2N is a Baire measurable reduction of E to Id�2N�, then the preimage
of every point y > f�X� is an E-class, and hence is meager, contradicting the previous
proposition. �

This, together with (5) of Theorem 8.26, gives the following.

Corollary 11.9. If a group Γ acts by homeomorphisms on a Polish space X such that every
orbit is meager (e.g. when Γ is countable) and there is a dense orbit, then EΓ is nonsmooth.
In particular, if G is a Polish group and Γ @ G is a countable dense subgroup, then the coset
equivalence relation EΓ is nonsmooth.

Examples 11.10.

(a) The Vitali equivalence relation Ev is nonsmooth. Indeed, Ev is the orbit equivalence
relation of the translation action of Q on R.

(b) The irrational rotation Eα of S1 is nonsmooth. Indeed, let Γ be the subgroup of S1

generated by e2παi. It is clear that Eα is precisely the orbit equivalence relation induced
by the translation action Γ¸ S1, and it follows from irrationality of α that Γ is dense.

(c) E0 is nonsmooth. Indeed, each E0-class is countable dense and E0 is induced by a
continuous action of a countable group as described in Example 9.5 (d). Moreover, like
in the previous two examples, we can even view E0 as the orbit equivalence relation
induced by the translation action of a countable dense subgroup Γ @ �Z~2Z�N, namely,
Γ � �Z~2Z�`N �� �q > �Z~2Z�N � ¦ªn q�n� � 0�.

11.D. The Harrington–Kechris–Louveau dichotomy. For an equivalence relation E
on a Polish space X, it is clear that if E0 BB E then E is nonsmooth. The following striking
theorem shows that this is the only impediment to smoothness!

Dichotomy 11.11 (Harrington–Kechris–Louveau ’90). For any Borel equivalence relation
E on a Polish space X, either E is smooth, or else, E0 Zc E.

This theorem shows, in particular, that E0 is the BB-minimum element (up to �B) among
all nonsmooth Borel equivalence relations; in other words, it is the minimum unsolvable
classification problem among the Borel ones.

12. Countable Borel equivalence relations and actions of countable
groups

Definition 12.1. An equivalence relation E on a Polish space X is called countable (resp.
finite) if each E-class is countable (resp. finite).
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12.A. Arising from countable group actions. Countable Borel equivalence relations
naturally arise as orbit equivalence relations of Borel actions of countable groups; indeed,
if a countable group Γ acts on a Polish space X in a Borel fashion, then the induced orbit
equivalence relation EΓ is countable and is Borel because for x, y >X,

xEΓy 
� §γ > Γ �γ � x � y�.
Surprisingly enough, this is the only way countable Borel equivalence relation arise, as the
following important corollary of the Luzin–Novikov theorem shows:

Theorem 12.2 (Feldman–Moore). For any countable Borel equivalence relation E on a
Polish space X, there is a Borel action Γ¸X of a countable group Γ with EΓ � E. Moreover,
Γ can be taken to be generated by involutions14 so that for every �x, y� > E, there is an
involution γ > Γ with γ � x � y.

Proof. We only sketch the idea of the proof without going into details (see [Tse13, 22.2] for
a complete proof). By Luzin–Novikov, E � "n graph�fn�, where each fn is a Borel partial
function X @ X. Partition each graph�fn� into countably many further Borel graphs of
one-to-one Borel partial functions having their domain and range disjoint, so we can extend
them to full Borel involutions of X and let Γ be the group (under composition) generated
by these involutions. �

12.B. Smoothness for countable equivalence relations. As mentioned above, it is a
theorem of Burgess that smoothness is equivalent to admitting a Borel transversal/selector
for the orbit equivalence relations of continuous actions of Polish groups. Here we will record
a special case of this15.

Proposition 12.3. For a countable equivalence relation E on a Polish space X, the following
are equivalent:

(1) E is smooth.
(2) E admits a Borel selector.
(3) E admits a Borel transversal.
(4) E admits an analytic transversal.

Proof. The implication (1)�(2) follows immediately from Corollary 5.25. Similarly, (2)�(3)
follows from Corollary 5.24. The rest was proven in Proposition 11.3. �

Proposition 12.4. Any finite Borel equivalence relation E on a Polish space X is smooth
(equivalently, admits a Borel transversal).

Proof. Let @ be a Borel linear ordering on X, which exists by Corollary 5.28. Put

A �� �x >X � x � min�x�E� .
It remains to show that A is Borel. But, for x >X,

x > A 
� ¦y >X �yEx� x B y�,
and the latter definition is Borel by Corollary 5.24. �

14A group element γ > Γ is called an involution if γ2
� 1Γ, or equivalently, γ�1

� γ.
15The fact this is a special case is due to the Feldman–Moore theorem 12.2 and Corollary 5.17
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12.C. Complete sections.

Definition 12.5. For an equivalence relation E on a set X, a set A bX is called a complete
section for E if it meets every E-class C, i.e. A 9C x g.

In many proofs, it helps to have “small” Borel complete sections to mark points in each
E-class that could guide us in our combinatorial constructions (like cairns on a hiking trail).
Of course, the “smallest” Borel complete section is a transversal, but this only exists for
smooth equivalence relations. However, even when E is nonsmooth, we can hope to take
smaller and smaller complete sections, i.e. mark less and less points in each E-class. We
make this precise here.

Definition 12.6. Let E be an equivalence relation on a Polish space X. A sequence �Bn�n>N
of subsets of X is called a marker sequence for E if

(a) �Bn�n is decreasing;

(b) �Bn�n is vanishing, i.e. �nBn � g;

(c) each Bn is a complete section for E.

We call a marker sequence �Bn�n Borel if each Bn is Borel.

Note that for a marker sequence to exist, it is necessary for E to be aperiodic, i.e. each
E-class must be infinite.

Marker (cairn?) Lemma 12.7. Any aperiodic countable Borel equivalence relation E on
a Polish space X admits a Borel marker sequence.

Proof. If X is countable, every set is Borel, so the statement is trivial. Thus, by the Borel
isomorphism, we may assume without loss of generality that X � 2N. This allows us to use
the linear (lexicographic) ordering of 2N, that’s all.

For each x > X, note that �x�E has a limit point because it is infinite and 2N is compact
metrizable. Let lp�x� denote the leftmost (i.e. lexicographically least) limit point of �x�E;
note that lp�x� itself may or may not belong to �x�E.16

Now for each n, put x > An if it is within 2�n distance from lp�x�, i.e.

x > An 
� lp�x�Cn � xCn.
Claim. Each An is Borel.

Proof of Claim. Let sn � X � 2n be defined by x ( lexicographically least s > 2n such thatS�x�E 9NsS �ª and note that lp�x�Cn � sn, so it is enough to show that each sn is Borel. To
this end, observe that for s > 2n and x >X,

sn�x� � s 
� S�x�E 9NsS �ª and ¦t @lex s S�x�E 9NtS @ª,
and

S�x�E 9NtS @ª 
� §m > N§x1, ..., xm > Ex 9Nt �x1, ..., xm > Nt , ¦y > Ex 9Nt

m

�
i�1

y � xi�.
16It follows from the proof of the Marker Lemma that the function lp � X � X is Borel, and note that it

is a homomorphism of E to Id�X�. However, it may not be a reduction since it is possible to have �x�E and
�y�E disjoint yet lp�x� � lp�y�.
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But checking existence in Ex 9Nt is Borel by Luzin–Novikov since Ex 9Nt � �E 9 �X �Nt��x
is countable for every x >X. Ú

The sequence �An�n is almost a marker sequence: it is decreasing and each An is clearly
a complete section. However it may not be vanishing because some of the E-classes may
actually contain their leftmost limit points, i.e. for some x >X, it may be that lp�x� > �x�E,
in which case lp�x� > An for all n. Note however, that these are the only possible points
in A �� �nAn, so A meets every E-class in at most one point. Thus, because for each
x > X, �x�E 9An is infinite, Bn �� An �A is still a complete section, but now we also have
�nBn � g. �

Corollary 12.8. Any aperiodic countable Borel equivalence relation E on a standard prob-
ability space �X,µ� admits a Borel complete section of arbitrarily small measure.

Proof. For any decreasing sequence �Bn�n the finiteness of µ and countable additivity guar-
antee downward continuity: limn µ�Bn� � µ��nBn�. �
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