
FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS

ANUSH TSERUNYAN

Contents

1. Introduction 3
2. First order logic: the semantic aspect 4
2.A. Structures 4
2.B. Language and interpretation 8
2.C. Definability 12
2.D. Theories, models, and axiomatization 13
2.E. Semantic versions of implication, consistency, and completeness 15
2.F. Elementarity 16
3. First order logic: the syntactic aspect 18
3.A. The axioms of FOL(τ) 18
3.B. Formal proofs 20
3.C. Syntactic versions of consistency and completeness 21
4. Completeness of FOL and its consequences 23
4.A. Syntactic-semantic duality, completeness and compactness 23
4.B. Henkin’s proof of Gödel’s Completeness Theorem 24
4.C. The Skolem “paradox” 28
4.D. Upward Löwenheim–Skolem theorem 28
4.E. Nonstandard models of arithmetic 29
4.F. From finite to infinite and back 29
4.G. Nonaxiomatizable classes 31
5. Complete theories 32
5.A. The Loś–Vaught test 33
5.B. Algebraically closed fields and the Lefschetz Principle 34
5.C. Reducts of arithmetic 36
6. Incomplete theories 37
6.A. Sketch of proof of the Incompleteness theorem 37
6.B. Quine: a program that prints its own code 39
6.C. A quick introduction to recursion theory 41
6.D. Representability in a theory 47
6.E. Robinson’s system Q 49
6.F. Gödel coding 51
6.G. The First Incompleteness Theorem (Rosser’s form) 53
6.H. The Second Incompleteness Theorem and Löb’s theorem 56
7. Undecidable theories 57
7.A. Σ0

1 sets and Kleene’s theorem 57

These notes owe a great deal to [Mos08] and [vdD10]; in fact, some parts are almost literally copied from
them. I also used my handwritten lecture notes from Matthias Aschenbrenner’s model theory course taught
at UCLA, as well as [Mar02] and [End01].

1

2 ANUSH TSERUNYAN

7.B. Universal Σ0
1 relation and Church’s theorem 59

8. Quantifier elimination 61
8.A. Definitions and technicalities 61
8.B. Connection with decidability 62
8.C. Syntactic approach 63
8.D. Semantic approach 64
8.E. Quantifier elimination for ACF 65
8.F. Model-completeness 66
8.G. Hilbert’s Nullstellensatz 67
References 68

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 3

1. Introduction

These lecture notes introduce the main ideas and basic results of mathematical logic from a
fairly modern prospective, providing a number of applications to other fields of mathematics
such as algebra, algebraic geometry, and combinatorics. They consist of three parts: basic
model theory, basic recursion theory, and more.

Basic model theory

Model theory is a study of mathematical structures, examples of which include groups, rings,
fields, graphs, and partial orders. We will first abstractly study structures and definability,
theories, models and categoricity, as well as formal proofs, and this will culminate in proofs
of the Gödel Completeness and Compactness Theorems — two of the most useful tools of
logic. Then, we’ll apply the developed techniques to concrete examples such as the structure
of natural numbers and algebraically closed fields; the latter will yield a rigorous proof of
the Lefschetz Principle (a first-order sentence is true in the field of complex numbers if and
only if it is true in all algebraically closed fields of sufficiently large characteristic) and an
amusingly slick proof of Ax’s theorem (if a polynomial function Cn → Cn is injective, then
it is surjective). We will also discuss applications of the Compactness theorem in deriving
finitary analogues of the infinitary combinatorial statements such as the infinite Ramsey
theorem, van der Waerden’s or Szemerédi’s theorems, graph colorings, etc.

Basic recursion theory

At the beginning of the 20th century mathematics experienced a crisis due to the discovery
of certain paradoxes (e.g. Russell’s paradox) in previous attempts to formalize abstract
notions of sets and functions. To put analysis on a firm foundation, similar to the axiomatic
foundation for geometry, Hilbert proposed a program aimed at a direct consistency proof of
analysis. This would involve a system of axioms that is consistent, meaning free of internal
contradictions, and complete, meaning rich enough to prove all true statements. But the
search for such a system was doomed to fail: Gödel proved in the early 1930s that any system
of axioms that can be listed by some “computable process”, and subsumes Peano arithmetic,
is either incomplete or inconsistent. This is the Gödel Incompleteness theorem. To prove this
theorem, we begin with a robust definition of “computable process” (algorithm), followed
by a rather short investigation of computable functions and sets. The investigation will
be short because we will quickly discover that many interesting functions and sets are not
computable, as radiantly illustrated by the Gödel Incompleteness theorem and Church’s
theorem on undecidability of first-order logic.

And more

Diving more into model theory, we will study quantifier elimination and model complete-
ness, and, as a quick application, give a transparent proof of Hilbert’s Nullstellensatz. Then,
changing gears, we will learn two completely different (set-theoretic and combinatorial) con-
structions of structures from existing ones: ultraproducts and Fräıssé limits. The former
will involve a rather measure-theoretic introduction to ultrafilters, while the latter will touch
base with probabilistic objects like the random graph.

4 ANUSH TSERUNYAN

2. First order logic: the semantic aspect

Like any other field of mathematics, mathematical logic starts with a pile of definitions,
the importance and use of which will become apparent as we go. Right now, our position is
analogous to that of an instructor of geometry who has to define the concept of a differential
manifold from scratch without assuming knowledge of point set topology and differentiability.
So one has to patiently make his way through the definitions keeping in mind that the end
goal is worth it. Let the story begin...

2.A. Structures

Every mathematician recognizes a mathematical structure as such when he sees it. Here are
some.

Examples 2.1.

(a) A graph is a pair Γ = (Γ,E), where Γ ≠ ∅ is the set of nodes and E is a binary relation
on Γ, i.e. E ⊆ Γ2.

(b) A partial ordering is a pair P = (P,≤), where P is a set and ≤ is a binary relation on it
satisfying the following conditions:

(i) (Reflexivity) ∀x ∈ P , x ≤ x,
(ii) (Antisymmetry) ∀x, y ∈ P , if x ≤ y and y ≤ x, then x = y,

(iii) (Transitivity) ∀x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z.

(c) A group is a triple G = (G,e, ⋅), where G is a set, e is a fixed element of G (a constant)
and ⋅ is a binary operation on G such that the following conditions hold:

(i) (Associativity) ∀x, y, z ∈ G, x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z,
(ii) (Identity) ∀x ∈ G, e ⋅ x = x ⋅ e = x,
(iii) (Inverse) ∀x ∈ G ∃y ∈ G, xy = yx = e.

(d) An ordered field is a 6-tuple F = (F,0,1,+, ⋅,<), where F is a set, 0,1 are some fixed
elements of F , + and ⋅ are binary operations, and < is a binary relation on F such that
certain conditions are satisfied (too many to list here).

What is common between these examples? Well, they all have an underlying set together
with either relations, operations or constant elements (or all of the above as in example (d))
defined on it. Let’s formalize this and give an abstract definition of a mathematical structure.

Definition 2.2. A structure is a quadruple S = (S,C,F ,R), where S is a set, C is a set
of elements from S (constants), F is a set of operations on S (i.e. each element of F is a
function from Sn to S for some n ≥ 1) and R is a set of relations on S (i.e. each element of
R is a subset of Sn for some n ≥ 1).

Although this definition covers all of the examples above, it is a bit awkward to use when
defining a class of structures that have the same “types” of constants, functions and relations.
It gets even worse when the structures in that class must also satisfy certain axioms. For
example, when defining the class of groups, we not only have to demand that, in those
structures, C and F are singletons, R = ∅, and the operation in F is binary, but we also
have to require that conditions (i)-(iii) of Example 2.1(c) hold. To write these conditions
down, we need a coherent system of naming the constants, functions and relations in these

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 5

structures, i.e. we have to specify that e refers to the unique element in C and ⋅ refers to the
unique element in F . So why don’t we first fix a set of names (like {e, ⋅}) and then include
their correspondence with the actual constants, functions and relations in the definition of
a structure? In fact, that is exactly what we will do.

Definition 2.3. A signature is a quadruple

τ = (C,F ,R, a),
where C,F ,R are pairwise disjoint sets (of symbols), which we refer to as the sets of constant,
relation and function symbols, respectively, and

a ∶ F ∪R → N>0.

(Here N>0 denotes the set of positive natural numbers because, in mathematical logic, N
includes 0.)

A relation or function symbol P (i.e. an element of F ∪R) is said to be n-ary if a(P) = n.
The sets C,F ,R should be thought of as names for constant elements, relations and functions
(operations), and not the actual constant elements, relations and functions themselves! It is
also good to keep in mind that any of the sets C,F ,R can be empty.

Examples 2.4.

(a) The signature for graphs is

τgraph = (∅,∅,{E} , (E ↦ 2)),

However, this is too formal and hard to read, so in order to avoid headache (think of a
signature for ordered fields!) we simply write

τgraph = (E),

and then specify that E is a binary relation symbol.

(b) The signature for monoids is
τmon = (e, ⋅),

where ⋅ is a binary function symbol and e is a constant symbol.

(c) The signature for rings is
τring = (0,1,+,−, ⋅),

where +,−, ⋅ are binary function symbols and 0,1 are constant symbols.

(d) The signature for arithmetic is

τarthm = (0, S,+, ⋅),

where 0 is a constant symbol, S is a unary function symbol (S stands for “successor”),
and +, ⋅ are binary function symbols.

(e) The signature for sets is
τset = (∈),

where ∈ is a binary relation symbol.

Although in this examples the signatures are finite, it is not required by the definition.
Now we are ready to define a structure in a given signature τ = (C,R,F).

6 ANUSH TSERUNYAN

Definition 2.5. A τ -structure is a pair S = (S, ι), where S is a set and ι is a map (corre-
spondence) that assigns

● to each constant symbol c in τ a member ι(c) of S;
● to each n-ary relation symbol R in τ an n-ary function ι(R) ⊆ Sn;
● to each n-ary function symbol f in τ an n-ary function ι(f) ∶ Sn → S.

We call S the universe of the structure S. The choice of the letter ι is because we think
of ι as the interpretation of the symbols of τ in the structure S. To simplify the notation,
we write qS instead of ι(q), for all symbols q in τ , so instead of (S, ι), we write

S = (S,{cS}
c∈C ,{R

S}
R∈R ,{f

S}
f∈F).

For finite signatures, we use an even simpler notation as in the following examples.

Examples 2.6.

(a) A complete graph on n vertices is a τgraph-structure

Kn = (Γ,EKn),

where Γ is a set of n elements and EKn = Γ2.

(b) Z, as a group, is a τmon-structure

Z = (Z, eZ, ⋅Z),

where eZ is 0 ∈ Z and ⋅Z is the usual addition operation.

(c) R, as a field, is a τring-structure:

R = (R,0R,1R,+R,−R, ⋅R),

where all of the symbols are interpreted in the usual way.

(d) Here is a useless τring-structure:

Rcrazy = (R,0Rcrazy ,1Rcrazy ,+Rcrazy ,−Rcrazy , ⋅Rcrazy),

where 0Rcrazy ,1Rcrazy are equal to π, +Rcrazy is the sin(x + y) function, −Rcrazy is the x + y
function and ⋅Rcrazy is the x+4y function. Clearly Rcrazy is far from being a ring although
it is a structure in the signature of rings.

(e) The structure of natural numbers is a τarthm-structure and it will be the central object
of this course:

N = (N,0N, SN,+N, ⋅N),

where 0N,+N, ⋅N are defined in the usual way, and SN is the successor operation (i.e.
the unary function of adding 1).

Since it is annoying to keep writing S in the superscript to denote the interpretation of
symbols of τ in a τ -structure S, we will omit it if the interpretation is the usual/expected
one (as suggested by the notation), as long as it is clear that we mean the interpretations
rather than the symbols. For example, we will write R = (R,0,1,+,−, ⋅) instead of R =
(R,0R,1R,+R,−R, ⋅R) if it is the structure in Example 2.6(c), but we won’t use this shorthand
notation with anything like Example 2.6(d).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 7

In algebra, one of the first things you learn after the definition of a group is the definition
of a subgroup, homomorphism and isomorphism. We do the same with arbitrary structures.

Definition 2.7. For τ -structures A,B, we say that A is a substructure of B and write A ⊆ B
if A ⊆ B and the interpretations of τ by A and B coincide on A, more precisely:

● cA = cB, for any constant symbol c in τ ,
● fA = fB⇂An for any n-ary function symbol f in τ , i.e. fA(a⃗) = fB(a⃗) for all a⃗ ∈ An,
● RA = RB ∩ An for any n-ary relation symbol R in τ , i.e. RA(a⃗) ⇔ RB(a⃗) for all
a⃗ ∈ An.

For example, (N,0,+) is a substructure of (Z,0,+), Z = (Z,0,1,+, ⋅) is a substructure of
R = (R,0,1,+, ⋅). If τ only contains relation symbols, then any subset is (a universe of) a
substructure. For example, if (Γ,E) is a graph and ∆ ⊆ Γ, then (∆,E∩∆2), i.e. the induced
subgraph on ∆, is a substructure of (Γ,E). However, note that being a subgraph is not
the same as being a substructure of a graph: indeed, a subgraph of a graph (Γ,E) can be
missing some edges between vertices it contains even though these edges may be present in
E and this kind of subgraph isn’t a substructure of (Γ,E).

Note that the intersection of substructures of the same structure is again a substructure.
Let B be a τ -structure and S ⊆ B. The substructure generated by S is the smallest substruc-
ture containing S, i.e. it is the intersection of all substructures of B that contain S. We
denote this fact by A = ⟨S⟩B. Note that the universe of ⟨S⟩B is obtained from S by throwing
in the constants of B and closing it under the functions B. For example, the substructure
of R = (R,0,1,+, ⋅) generated by ∅ is (N,0,1,+, ⋅) (why?).

For a τ -structure B and A ⊆ B, we say that A is a universe of a substructure of B if
the universe of ⟨A⟩B is A (in other words, A already contains all of the constants of B and
is closed under the functions of B). For example, if τ only has relation symbols, then any
subset A ⊆ B is a universe of a substructure.

Definition 2.8. Let A,B be τ -structures. A function h ∶ A→ B is called a τ -homomorphism
(or just homomorphism) if h respects the interpretation of τ , more precisely:

● h(cA) = cB, for any constant symbol c in τ ,
● h(fA(a⃗)) = fB(h(a⃗)), for any n-ary function symbol f in τ and for all a⃗ ∈ An,
● RA(a⃗) ⇒ RB(h(a⃗)), for any n-ary relation symbol R in τ and for all a⃗ ∈ An,

where for a⃗ = (a1, ..., an), h(a⃗) ∶= (h(a1), ..., h(an)). Denote this by h ∶ A→ B.

Note that in this definition, we only require ⇒ for relations. This asymmetry is justified
by the fact that if we look at the graphs of functions fA and fB as (n + 1)-ary relations
RA
f and RB

f , then, putting b = fA(a⃗), the condition h(fA(a⃗)) = fB(h(a⃗)) is equivalent to

RA
f (a⃗, b) ⇒ RB

f (h(a⃗), h(b)).

It is straightforward to verify that for h ∶ A→ B, h(A) is a universe of a substructure of B
(i.e. h(A) contains all of the constants of B and is closed under applications of the functions
of B).

Definition 2.9. Let A,B be τ -structures. A function h ∶ A → B is called a τ -isomorphism
(or just isomorphism) if h is bijective and both h and h−1 are τ -homomorphisms; in this case
we write h ∶ A ∼Ð→ B. The structures A,B are called isomorphic if there is an isomorphism
between them; denote this by A ≃ B.

8 ANUSH TSERUNYAN

Definition 2.10. Let A,B be τ -structures and h ∶ A → B. Recalling that h(A) is the
universe of ⟨h(A)⟩B, call h a τ -embedding (or just embedding) if h is an isomorphism between
A and ⟨h(A)⟩B. We denote this by h ∶ A↪ B.

Note that if A ⊆ B then the inclusion map is an embedding. This wouldn’t be true if in
the definition of substructure we had ⇒ for relations instead of ⇔.

Sometimes in algebra we consider the universe of a ring as an abelian group under addition,
in other words, we “forget” the multiplication operation. We make this precise here.

Definition 2.11. Let τ, τ ′ be signatures with τ ⊆ τ ′, let A be a τ -structure and B be a
τ ′-structure. We say that A is a reduct of B (or B an expansion of A) and write A = B⇂τ
if A and B have the same underlying set and the same interpretations of the symbols of τ .

For example, (R,0,+) is a reduct of (R,0,1,+, ⋅), which in its turn is a reduct of (R,0,1,+,
⋅,<).

2.B. Language and interpretation

Now we have to define the language of First Order Logic (FOL) that will allow us to express
statements about τ -structures, like axioms (i)-(iii) in Example 2.1(c). Although the defini-
tions below are very natural, they are somewhat annoying to write and even to read. The
readers are advised to try to come up with the definitions themselves before (instead of?)
reading.

Let τ denote a signature for the rest of the section.

Definition 2.12. The alphabet FOL(τ) of the first order language in the signature τ com-
prises of the symbols in τ and the following additional symbols:

● logical symbols = ¬ ∧ ∨ → ∀ ∃
● punctuation symbols , ()
● symbols for variables v0, v1, v2, ...

The symbols ∀ and ∃ are called quantifiers. Below, finite sequences of symbols from
FOL(τ) are referred to as words in FOL(τ).

Definition 2.13. A τ -term (or a term in FOL(τ)) is a word formed by the following recursive
rules:

(i) each constant symbol is a term;
(ii) each variable is a term;
(iii) if t1, ..., tn are terms and f ∈ τ is an n-ary function symbol, then f(t1, ..., tn) is a term.

Examples 2.14.

(a) (v0 ⋅1) ⋅v3 is a term in FOL(τgroup). Note that the way this term is written is technically
incorrect, we should have written ⋅(⋅(v0,1), v3), but the latter is almost impossible to
read, so we will keep abusing notation and write the former way.

(b) S(0 + v2) + S(S(S(v2))) is a term in FOL(τarthm) (the language of arithmetic).

(c) Variables v0, v1, ... are the only terms in FOL(τgraph).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 9

We also casually use letters different than v0, v1, ... to denote variables, e.g. v, u, x, y, z.
Below, a vector of variables (v1, ..., vn) is denoted by v⃗ and we let ∣v⃗∣ denote its length n.

Definition 2.15 (Interpretation of terms). Let M be a τ -structure and t be a τ -term build
using variables from v⃗. We define the interpretation of t(v⃗) in M as a function tM ∶M ∣v⃗∣ →M
by induction on the construction of t as follows: for a⃗ = (a1, ..., a∣v⃗∣) ∈M ∣v⃗∣,

(i) if t = c, where c is a constant symbol in τ , then tM(a⃗) = cM;
(ii) if t = vi, then tM(a⃗) = ai;
(iii) if t = f(t1, ..., tk), where t1, ..., tk are terms and f is an k-ary function symbol in τ , then

tM(a⃗) = fM(tM1 (a⃗), ..., tMk (a⃗)).

So one should think of the term t(v⃗) as a name of the function tM. Note that if t = v1,
then t(v1) is interpreted as a unary function, while t(v1, v2) as a binary function (although
it does not depend on v2). This is exactly what we do with polynomials for example: we
write p(x, y) = x2 + 1 to mean that this is a polynomial in two variables x and y although it
doesn’t depend on y.

Convention 2.16. For a term t and a vector of variable v⃗, whenever we write t(v⃗), we mean
that the variables appearing in t are among those in v⃗.

Definition 2.17. A τ -formula (or a formula in FOL(τ)) is a word formed by the following
recursive rules:

(i) if s, t are terms then s = t is a formula;
(ii) if t1, ..., tn are terms and R ∈ τ is an n-ary relation symbol, then R(t1, ..., tn) is a formula;
(iii) if ϕ and ψ are formulas, then ¬(ϕ), (ϕ) ∧ (ψ), (ϕ) ∨ (ψ), (ϕ) → (ψ) are formulas;
(iv) if ϕ is a formula and v a variable symbol, then ∀vϕ, ∃vϕ are formulas.

The formulas in (i) and (ii) of the above definition are called atomic. Also, if a formula is
formed without using (iv), then it does not have any quantifiers, so we call it quantifier free
(or q.f. for short).

According to this definition, (∀x(x = y)) ∧ (x ≠ z) is a valid formula (in any signature),
although the third occurrence of x has nothing to do with its first two occurrences, where
x is used as the variable of the quantifier ∀. The use of x as the variable for the quantifier
is a bad idea because it makes reading of the formula hard and confusing. (Imagine writing

x ∫
1

0 xdx instead of x ∫
1

0 tdt in a calculus course!) Thus, we make a convention to not use
such bad notation.

Convention 2.18. We say that the variable v is quantified in the formula ϕ if ∀vψ or ∃vψ,
for some formula ψ, occurs in some stage of the recursive construction of ϕ. We make the
convention that each variable v can be used with a quantifier only once, i.e. a subword of
the form Qvψ occurs at most once, where Q is either ∀ or ∃, and if it does, then v is not
allowed to be used elsewhere other than in ψ.

This convention makes things like (∀x(x = y)) ∧ (x ≠ z) invalid, and one should write
(∀t(t = y)) ∧ (x ≠ z) instead.

A variable v is free in a formula ϕ if it occurs in ϕ and is not quantified. A formula
without free variables is called a sentence. Note that all statements (theorems, conjectures,
etc.) in mathematics are sentences (in the language of set theory).

We interpret formulas in a given structure M as n-ary relations on M , for some M , or,
equivalently, as functions from Mn to {true, false}. Just like we did with terms, we define

10 ANUSH TSERUNYAN

interpretation for ϕ(v⃗) (as opposed to just ϕ), for a vector of variables v⃗ = (v1, ..., vn), as
long as the free variables of ϕ are among v1, ..., vn and none of v1, ..., vn is quantified in ϕ.

Convention 2.19. For a formula ϕ and a vector of variable v⃗ = (v1, ..., vn), whenever we write
ϕ(v⃗), we mean that all of the free variables of ϕ are among v1, ..., vn and none of v1, ..., vn is
quantified in ϕ.

Definition 2.20 (Interpretation of formulas). Let M be a τ -structure and ϕ(v⃗) a τ -formula.
For a⃗ = (a1, ...a∣v⃗∣) ∈M ∣v⃗∣, we define the relation M ⊧ ϕ(a⃗) by induction on the construction
of ϕ as follows:

(i) if ϕ is t1 = t2, then M ⊧ ϕ(a⃗) if tM1 (a⃗) = tM2 (a⃗);
(ii) if ϕ isR(t1, ..., tk), then M ⊧ ϕ(a⃗) ifRM(tM1 (a⃗), ..., tMk (a⃗)), i.e. (tM1 (a⃗), ..., tMk (a⃗)) ∈ RM;
(iii) if ϕ is ¬ψ, then M ⊧ ϕ(a⃗) if M ⊭ ϕ(a⃗);
(iv) if ϕ is ψ ∧ θ, then M ⊧ ϕ(a⃗) if M ⊧ ψ(a⃗) and M ⊧ θ(a⃗);
(v) if ϕ is ψ ∨ θ, then M ⊧ ϕ(a⃗) if M ⊧ ψ(a⃗) or M ⊧ θ(a⃗);
(vi) if ϕ is ∀uψ(v⃗, u) (hence u is not in v⃗ by our assumption), then M ⊧ ϕ(a⃗) if for all

b ∈M , M ⊧ ψ(a⃗, b);
(vii) if ϕ is ∃uψ(v⃗, u), then M ⊧ ϕ(a⃗) if there exists b ∈M , M ⊧ ψ(a⃗, b).

We read M ⊧ ϕ(a⃗) as ϕ is true (holds) about a⃗ in M. Note that the above definition
applies when ϕ is a sentence and n = 0. In this case, we read M ⊧ ϕ as ϕ is true/valid (holds)
in M. For a vector of variables v⃗ = (v1, ..., vn), we say that a formula ϕ(v⃗) is valid in M and
write M ⊧ ϕ(v⃗) if M ⊧ ∀v⃗ϕ(v⃗), where ∀v⃗ abbreviates ∀v1∀v2...∀vn.

Note that some of the logical symbols we use are redundant: we could restrict to using
only ¬,∨,∃ and the rest would be expressible in terms of these. So what we usually do is
the following: we use all of the symbols when it is convenient, but in our inductive proofs
we only take care of the cases with ¬,∨,∃ or ¬,∧,∀ or other equivalent combinations.

Examples 2.21.

(a) N ⊧ S(S(0)) = 2.

(b) Let Nexp = (N,0, S,+, ⋅, exp), where 0, S,+, ⋅ are interpreted as usual and exp is the binary
exponentiation function: exp(n,m) = nm for nonzero n and exp(0,m) = 0. Thanks to A.
Wiles, we now know that Nexp ⊧ ∀n∀x∀y∀z[(n ≥ 3∧exp(x,n)+exp(y, n) = exp(z, n)) →
(x = 0 ∨ y = 0)], where n ≥ 3 stands for n ≠ 0 ∧ n ≠ S(0) ∧ n ≠ S(S(0)).

(c) R ⊧ ∃y(a = y ⋅ y) holds for all non-negative a ∈ R.

Convention 2.22. Because the symbol = that is part of FOL(τ), it may get confusing to use
it also in our regular mathematical notation to express that two terms or two formulas are
equal (literally the same). Thus, we adopt the convention to use the symbol ≐ instead of =.
For example, instead of writing “let φ = x = x”, we write “let φ ≐ x = x”.

Lemma 2.23. Let A,B be two τ -structures. If h ∶ A→ B is a homomorphism, then for any
term t(v⃗) and a⃗ ∈ A∣v⃗∣,

h(tA(a⃗)) = tB(h(a⃗)),

where h(a⃗) = (h(a1), ..., h(a∣v⃗∣)).

Proof. We prove by induction on the construction (length) of t.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 11

● If t ≐ c, for a constant symbol c in τ , then tA(a⃗) = cA and hence we have

h(tA(a⃗)) = h(cA) = cB = tB(h(a⃗))

because h is a homomorphism.
● If t ≐ vi, for a variable vi, then tA(a⃗) = ai and hence we have

h(tA(a⃗)) = h(ai) = t
B(h(a⃗)).

● If t ≐ f(t1, ..., tk), for a function symbol f in τ , then

h(tA(a⃗)) = h(fA(tA1 (a⃗), ..., tAk (a⃗)))

[h is a homomorphism] = fB(h(tA1 (a⃗)), ..., h(tAk (a⃗)))

[by the induction hypothesis] = fB(tB1 (h(a⃗)), ..., tAk (h(a⃗)))

= tB(h(a⃗)).

�

Proposition 2.24. Let A,B be two τ -structures. If h ∶ A→ B is an isomorphism, then for
any formula ϕ(v⃗) and a⃗ ∈ A∣v⃗∣,

A ⊧ ϕ(a⃗) ⇐⇒ B ⊧ ϕ(h(a⃗)).

Proof. We prove by induction on the construction (length) of ϕ. For the step of induction,
it is enough to consider only the following cases: ϕ ≐ ¬ψ, ϕ ≐ ¬ψ1 ∧ ψ2 and ϕ ≐ ∃vψ.

● If ϕ ≐ t1 = t2, then

A ⊧ ϕ(a⃗) ⇐⇒ tA1 (a⃗) = tA2 (a⃗)

[h is injective] ⇐⇒ h(tA1 (a⃗)) = h(tA2 (a⃗))

[by Lemma 2.23] ⇐⇒ tB1 (h(a⃗)) = tB2 (h(a⃗))

⇐⇒ B ⊧ ϕ(h(a⃗)).

● If ϕ ≐ R(t1, ..., tk), then the calculation is similar to the previous case (also uses
Lemma 2.23).

● If ϕ ≐ ¬ψ, then

A ⊧ ϕ(a⃗) ⇐⇒ A ⊭ ψ(a⃗)

[by the induction hypothesis] ⇐⇒ B ⊭ ψ(a⃗)

⇐⇒ B ⊧ ϕ(h(a⃗)).

● If ϕ ≐ ψ1 ∧ ψ2, then the calculation is similar to the previous case.
● If ϕ ≐ ∃vψ, then

A ⊧ ϕ(a⃗) ⇐⇒ ∃a′ ∈ A,A ⊧ ψ(a⃗, a′)

[by the induction hypothesis] ⇐⇒ ∃a′ ∈ A,B ⊧ ψ(h(a⃗), h(a′))

[use surjectivity of h for ⇐Ô] ⇐⇒ ∃b ∈ B,B ⊧ ψ(h(a⃗), b)

⇐⇒ B ⊧ ϕ(h(a⃗)).

�

12 ANUSH TSERUNYAN

Proposition 2.25. If a τ -structure A is a reduct of a τ ′-structure B, then for every τ -
formula ϕ(v⃗) and a⃗ ∈ An (= Bn),

A ⊧ ϕ(a⃗) ⇐⇒ B ⊧ ϕ(a⃗).

Proof. Trivial induction on formulas and possibly also terms. �

2.C. Definability

Definition 2.26 (Definability). Let M be a τ -structure and A ⊆ M . D ⊆ Mn is called
A-definable (or definable from A) in M if there is a formula ϕ(x⃗, y⃗), where x⃗ = (x1, ..., xn)

and y⃗ = (y1, ..., ym) (for some m ≥ 0), and a⃗ ∈Mm such that ∀b⃗ ∈Mn

b⃗ ∈D⇔M ⊧ ϕ(b⃗, a⃗).

If A = ∅, we say that D is 0-definable, and if A =M , we say that D is definable. We say
that an element b⃗ ∈ Mn is definable if so is the singleton {b⃗}. For a set D ⊆ M , a function
f ∶Dn →M is called A-definable if so is its graph {(a⃗, b) ∈Dn ×M ∶ f(a⃗) = b}.

Note that the set Dn(A) of A-definable subsets of Mn is an algebra, i.e. it is closed under
finite unions and complements and contains ∅ and Mn. It is very useful to consider the
topology Tn(A) on Mn generated by Dn(A). It is clear that Dn(A) is actually a base for
that topology. Note that this topology might not be Hausdorff (see Example 2.27(c) below)
and whether it is compact or not is tightly related to a property called saturation, which
however is outside the scope of this course.

Examples 2.27.

(a) In R ∶= (R,0,1,+, ⋅), the set of positive numbers is 0-definable by the formula ϕ>0(x) ≐
x ≠ 0 ∧ ∃y(x = y2), where y2 is the abbreviation for y ⋅ y. Using this, one can define the
binary relation <⊆ R2 by the formula ϕ<(x, y) ≐ ϕ>0(y − x) (0-definable). Thus R and
R< ∶= (R,0,1,+, ⋅,<) have the same definable sets.

(b) In R< the set {r ∈ R ∶ r < π} is definable by the formula x < π. It turns out that this set is
not 0-definable. This follows from the fact that π is transcendental and a famous theorem
of Tarski that R< admits “quantifier elimination”, which implies that all 0-definable sets
are just finite unions of intervals with algebraic (or infinite) endpoints.

(c) In C ∶= (C,0,1,+, ⋅), the set {
√

2,−
√

2} is 0-definable by ϕ(z) ≐ z2−2 = 0, where z2 and 2

are the abbreviation for z ⋅ z and 1+1, respectively. However,
√

2 itself isn’t 0-definable!
This follows from the fact that C admits “quantifier elimination” (as we will see later),
so the only definable sets are those defined by polynomials and Boolean combinations
thereof. In particular, the topology T1(∅) of 0-definable sets isn’t Hausdorff (not even

T0) as any 0-definable set containing
√

2 also contains −
√

2.

(d) In any graph Γ ∶= (Γ,E), the set

{(u, v) ∈ Γ2 ∶ the edge-distance between u and v is ≤ 2}

is 0-definable by the formula

ϕ(x, y) ≐ xEy ∨ ∃z(xEz ∧ zEy).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 13

Similarly, one can show that for any n ≥ 1, the set

{(u, v) ∈ Γ2 ∶ the edge-distance between u and v is ≤ n}

is 0-definable. However it turns out that the set

{(u, v) ∈ Γ2 ∶ u and v are connected}

is not even definable in some (actually most) graphs. We will prove this later on in the
course after proving the Compactness theorem.

The definable subsets of N ∶= (N,0, S,+, ⋅) are called arithmetical. It is easy to see that a
set is definable in N if and only if it is 0-definable.

2.D. Theories, models, and axiomatization

Given a signature τ , a set of τ -sentences is called a τ -theory. The sentences in a theory T
are often referred to as axioms.

Definition 2.28. We say that a nonempty τ -structure M satisfies (or models) a τ -theory
T and write M ⊧ T if M ⊧ ϕ, for every ϕ ∈ T . Equivalently, we also say that M is a τ -model
(or just model) of T .

Notation 2.29. For a τ -theory T , let Mτ(T) denote the class1 of its τ -models, i.e. nonempty
τ -structures that satisfy it.

Definition 2.30. For a class C of τ -structures that is invariant under τ -isomorphism2, τ -
theory T is called an axiomatization of C if Mτ(T) = C. A class C is called (resp. finitely)
axiomatizable if it admits a (resp. finite) axiomatization. A τ -theory S is called an axioma-
tization of T if it is an axiomatization of Mτ(T), and we call T finitely axiomatizable if it
admits a finitely axiomatization.

Here are examples of axiomatizations for various classes of structures.

Examples 2.31.

(a) Graphs (undirected with no loops): Letting τgraph ∶= (E), the class of undirected graphs
(τgraph-structures) with no loops is axiomatized by the theory GRAPHS consisting of
the following axioms:

(i) (Undirected) ∀x∀y(xEy → yEx),
(ii) (No loops) ∀x(¬xEx).

In particular, this class is finitely axiomatizable.

(b) Infinite graphs: The class of undirected infinite graphs (τgraph-structures) with no loops
is axiomatized by the theory GRAPHS∞ consisting of the following axioms:

GRAPHS∞ ∶= GRAPHS ∪ {∃v1∃v2...∃vn⋀
i<j

vi ≠ vj ∶ n ≥ 2} .

We will show later on in the course that this class is not finitely axiomatizable.

1We will show later that if a theory has an infinite model, then it has models of arbitrary large cardinalities,
so indeed, Mτ(T) is too large to be a set, so it is a proper class.

2This means that if C contains a structure, then it also contains all of its isomorphic copies.

14 ANUSH TSERUNYAN

(c) Partial orderings: Letting τpo ∶= (≤), the class of partial orderings (τpo-structures) is
axiomatized by the theory PO consisting of the following axioms:
(PO1) (Reflexivity) ∀x(x ≤ x).
(PO2) (Antisymmetry) ∀x∀y(x ≤ y ∧ y ≤ x→ x = y),
(PO3) (Transitivity) ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z).

(d) Groups: Letting τmon ∶= (e, ⋅), the class of groups (τmon-structures) is axiomatized by the
theory GROUPS consisting of the following axioms:
(G1) (Associativity) ∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z],
(G2) (Identity) ∀x[e ⋅ x = x ⋅ e = x],
(G3) (Inverse) ∀x∃y[xy = yx = e].

(e) Rings and fields: Similarly, one defines the theory RINGS of rings in the signature
τring ∶= (0,1,+,−, ⋅) (too many axioms to write, but still finitely many), and then the
theory FIELDS of fields is defined as RINGS together with the following three axioms:
(F1) (Nonzero) 0 ≠ 1,
(F2) (Commutativity) ∀x∀y[x ⋅ y = y ⋅ x],
(F3) (Multiplicative inverse) ∀x∃y[xy = yx = 1],

(f) Algebraically closed fields: The following τring-theory axiomatizes the class of alge-
braically closed fields:

ACF ∶= FIELDS ∪ {∀a0∀a1...∀an∃r[anr
n + an−1r

n−1 + ... + a1r + a0 = 0] ∶ n ∈ N} .

(g) Characteristic p fields: Here is a τring axiomatizing the class of fields of characteristic p,
for a prime number p:

FIELDSp ∶= FIELDS ∪

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

= 0

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

(h) Characteristic 0 fields:

FIELDS0 ∶= FIELDS ∪

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

≠ 0 ∶ p prime

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

(i) Algebraically closed fields of fixed characteristic: Letting n be either 0 or prime, the
following is an axiomatization for a class of algebraically closed fields of characteristic
n:

ACFn ∶= ACF ∪ FIELDSn.

As we see, many interesting classes of structures admit a (first-order) axiomatization.
However, we will show later on in the course that many other very interesting classes of
structures, such as connected graphs, disconnected graphs, and cyclic groups, are not ax-
iomatizable!

Given a τ -structure A, we put Th(A) ∶= {ϕ ∶ ϕ is a τ -sentence and A ⊧ ϕ}. It can often
be very hard to tell whether a given τ -sentence is in Th(A) or not. For example, for the
structure N ∶= (N,0, S,+, ⋅) of natural numbers, we still don’t know whether the sentence
expressing Goldbach’s conjecture belongs to Th(N). Thus, it is desirable to find a simpler

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 15

axiomatization for Th(A) for a structure A of interest. The following is Peano’s attempt to
do so for N.

Example 2.32. The theory PA of arithmetic, called Peano Arithmetic, in the signature
τarthm ∶= (0, S,+, ⋅), consists of the following (infinitely many) axioms:

(PA1) ∀x[¬S(x) = 0]
(PA2) ∀x∀y[S(x) = S(y) → x = y]
(PA3) ∀x[x + 0 = x]
(PA4) ∀x∀y[S(x + y) = x + S(y)]
(PA5) ∀x[x ⋅ 0 = 0]
(PA6) ∀x∀y[x ⋅ S(y) = x ⋅ y + x]
(PA7) (Axiom schema of induction) for all τarthm-formulas ϕ(x, y⃗), where x is a variable and

y⃗ is a vector of variables, the following is an axiom:

[ϕ(0, y⃗) ∧ ∀x(ϕ(x, y⃗) → ϕ(x + 1, y⃗))] → ∀xϕ(x, y⃗).

Clearly, N ⊧ PA, where N ∶= (N,0, S,+, ⋅). However, as we will see later on, it is a consequence
of Gödel’s Incompleteness theorem that PA doesn’t axiomatize Th(N).

We end this section with perhaps the most important theory in mathematics.

Example 2.33. The Zermelo-Fraenkel set theory, ZFC, is a theory in the signature τset ∶= (∈),
in which all of the mathematics is derived. Its list of axiom schemas is a little too long to
be listed here, so it is enough to mention that they express some basic facts about sets such
as existence of unions, definable subsets, an infinite set, etc.

2.E. Semantic versions of implication, consistency, and completeness

Definition 2.34. We say that a τ -theory T satisfies a τ -sentence ϕ and write T ⊧ ϕ, if
every model of T satisfies ϕ, i.e. ∀M ⊧ T (M ⊧ ϕ). Equivalently, we say that T semantically
implies ϕ.

Examples 2.35.

(a) We know from group theory that GROUPS ⊧ ∀x∀y∀y′(yx = e = xy′ → y = y′).

(b) One can easily show that for any n ≥ 0 and p prime,

FIELDSp ⊧ 1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

= 0 ⇐⇒ p divides n.

(c) It is also easy to see that for all n ≥ 1, FIELDS0 ⊧ 1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

≠ 0.

Definition 2.36. A τ -theory T is said to be

● satisfiable (or semantically consistent) if it has a model.
● semantically τ -complete (or just semantically complete if τ is understood) if for every
τ -sentence ϕ, T ⊧ ϕ or T ⊧ ¬ϕ.

Let ⊺ denote the sentence ∀x(x = x) and set ⊥≐ ¬⊺. Note that T is satisfiable if and only
if T ⊭⊥.

16 ANUSH TSERUNYAN

Definition 2.37 (Elementary equivalence). Let A and B be τ -structures. We say that A
and B are called elementarily equivalent, and write A ≡ B, if Th(A) = Th(B).

By Proposition 2.24, isomorphic structures are elementarily equivalent. However, the
converse is false! For example, it is a homework problem to show that (Q,<) and (R,<)
are elementarily equivalent (in fact, (Q,<) ≺ (R,<)), but they clearly cannot be isomorphic
simply because of cardinality considerations.

The following is a convenient rephrasing of semantic completeness in terms of elementary
equivalence.

Proposition 2.38 (Semantic completeness, rephrased). A τ -theory T is semantically com-
plete if and only if for any A,B ⊧ T , A ≡ B.

Proof. Left as an exercise. �

In the light of this, it is easy to see that most of the examples of theories given above
are semantically incomplete; indeed, for example, the theory GROUPS is semantically in-
complete because there is a group that has an element of order 3 (i.e. satisfies the sentence
∃x(x ⋅ x ⋅ x = e)) and there is a group that does not. However, we will show later that the
theory ACFn, for n either prime or 0, is semantically complete.

Definition 2.39. A τ -theory T is said to be fully τ -complete (or just fully complete if τ is
understood) if for every τ -sentence ϕ, ϕ ∈ T or ¬ϕ ∈ T .

Note that Th(M) is satisfiable and fully complete, for any τ -structure M. Thus, every
satisfiable theory admits a satisfiable full completion.

2.F. Elementarity

Let B be a τ -structure and A a substructure of B. It is an interesting question as to which
formulas A and B agree on. The following is all we can say for general A ⊆ B.

Proposition 2.40. Substructures agree on quantifier free formulas; more precisely, for τ -
structures A ⊆ B, any quantifier free τ -formula γ and a⃗ ∈ An, we have

A ⊧ γ(a⃗) ⇐⇒ B ⊧ γ(a⃗).

Proof. Easy induction on the construction of γ which only involves the cases γ ≐ ¬ϕ, γ ≐ ϕ∧ψ,
and γ ≐ t1 = t2, where for the latter case one has to use Lemma 2.23 and the fact that the
inclusion map A↪ B is a homomorphism. �

However, the opinions of a structure and a substructure about formulas with quantifiers
may differ. Typically, a formula of the form ∃xϕ(x) may be valid in the bigger structure
but may not be in the substructure simply because the object for which ϕ holds (which we
refer to as a witness) may not be in the universe of the substructure. For example, in the
signature τgroup, a substructure of a group may not be a subgroup because not all elements
might have inverses in the substructure. Even if it was a subgroup, it might disagree with the
ambient group about the truth of statements like “being abelian” or “a particular element
commutes with everybody” (they may be true in the subgroup, but false in the ambient
group). The following definitions isolate those substructures which agree with the ambient
structure on all of the statements about the elements of the substructure.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 17

Definition 2.41 (Elementary embedding). Let A,B be τ -structures. An embedding f ∶
A→ B is called elementary if for all formulas ϕ(x⃗) and tuples a⃗ ∈ An,

A ⊧ ϕ(a⃗) ⇐⇒ B ⊧ ϕ(f(a⃗)).

If such f exists, we say that A elementarily embeds into B and write A↪e B.

Definition 2.42 (Elementary substructure). A substructure A of a τ -structure B is called
elementary if the inclusion map is elementary. We denote this by A ≺ B.

Proposition 2.43 (Tarski–Vaught test). Let A be a substructure of a τ -structure B. A is
an elementary substructure of B if and only if for every formula ϕ(x⃗, y) and a⃗ ∈ An,

B ⊧ ∃yϕ(a⃗, y) ⇐⇒ ∃a′ ∈ A such that B ⊧ ϕ(a⃗, a′).

Proof. ⇒∶ Supposing A ≺ B, we check the Tarski–Vaught condition:

[elementarity] B ⊧ ∃yϕ(a⃗, y) ⇐⇒ A ⊧ ∃yϕ(a⃗, y)
[definition of ⊧] ⇐⇒ ∃a′ ∈ A such that A ⊧ ϕ(a⃗, a′)
[elementarity] ⇐⇒ ∃a′ ∈ A such that B ⊧ ϕ(a⃗, a′).

⇐∶ Suppose the Tarski–Vaught condition holds and show by induction on the construction
of formulas that for every τ -formula ϕ and a⃗ ∈ An, we have

A ⊧ ϕ(a⃗) ⇐⇒ B ⊧ ϕ(a⃗).

Since Proposition 2.40 takes care of the atomic formulas and the cases ϕ ≐ ¬ψ and ϕ ≐ ψ0∧ψ2

are straightforward, so we only consider the case ϕ(x⃗) ≐ ∃yψ(x⃗, y). Fix a⃗ ∈ An and check:

[Tarski–Vaught condition] B ⊧ ∃yψ(a⃗, y) ⇐⇒ ∃a′ ∈ A such that B ⊧ ψ(a⃗, a′)
[induction] ⇐⇒ ∃a′ ∈ A such that A ⊧ ψ(a⃗, a′)

[definition of ⊧] ⇐⇒ A ⊧ ∃yψ(a⃗, y).

�

Given a τ -structure B and S ⊆ B, we could define a substructure generated by S as the
smallest substructure containing S mainly because intersection of substructures is still a sub-
structure. However, intersection of elementary substructures may not be elementary, so we
cannot define “the elementary substructure generated by S” like we did with substructures.

Let us re-examine how the substructure generated by S is produced: we have to throw in
all the constants of B into S and close the resulting set S1 under the functions of B. The
closing is an iterative process that one has to repeat ℵ0-many3 times, that is, assuming Sn
is defined, let Sn+1 ∶= Sn ∪ ⋃f∈FB

fB[Sn], where F is the set of function symbols of τ and if
f ∈ FB is a k-ary function, then fB[Sn] stands for fB(Skn). Finally put A ∶= ⋃∞

n=1 Sn and
this A will be closed under all functions in FB, hence will be a universe of a substructure.
It is worth noting here that ∣A∣ ≤ max(∣S∣, ∣τ ∣,ℵ0).

Now according to the Tarski–Vaught test, to be a universe of an elementary substructure,
a set has to also contain witnesses to all formulas that claim existence of an object and are
valid in B. So in our procedure above, at every step, we have to additionally throw in these
witnesses together with values of functions, and that’s all. In fact, only throwing witnesses
will also add the values of functions because for every k-ary function symbol f and a⃗ ∈ Bk,
the unique witness to the formula ∃yf(a⃗) = y is exactly fB(a⃗). Same is true for constant
symbols.

3ℵ0 denotes the cardinality of N.

18 ANUSH TSERUNYAN

The following theorem summarizes this discussion:

Theorem 2.44 (Löwenheim–Skolem). Let B be a τ -structure and S ⊆ B. There exists
A ≺ B with A ⊇ S such that ∣A∣ ≤ max(∣S∣, ∣τ ∣,ℵ0).

Proof. We start by choosing witnesses for the formulas that claim existence of an object in
B. For each τ -formula ϕ(x⃗, y), where x⃗ = (x1, ..., xk), define a partial4 function fϕ,k ∶ Bk ⇀ B

by b⃗ ↦ one of the witnesses to B ⊧ ∃yϕ(b⃗, y) if such exist; more precisely, if B ⊧ ∃yϕ(b⃗, y)

then fϕ,k(b⃗) is defined and is equal to one of the elements5 b′ ∈ B for which B ⊧ ϕ(b⃗, b′).
These fϕ,k are often called Skolem functions.

Now we recursively construct an increasing sequence (Sn)n∈N of subsets of B as follows:
put S0 ∶= S, and assuming Sn is defined, let

Sn+1 ∶= Sn ∪ ⋃
ϕ,k

fϕ,k(S
k
n).

Finally, let A ∶= ⋃n∈N Sn and it is now straightforward to check that A is a universe of a
substructure, which passes the Tarski–Vaught test and is thus elementary. �

Remark. In the definition of the Skolem functions above, it was possible that the same
formula had multiple witnesses and we were free to choose any of them. Depending on this
choice, the resulting substructure may be different (i.e. it is not canonical), and that is why
there is no notion of “the elementary substructure generated by S”.

3. First order logic: the syntactic aspect

So far, we have been dealing with the semantic (model-theoretic) aspect of FOL, i.e.
structures/models, satisfiability, definability, etc. In this section we turn to the syntactic
aspect, namely proof systems and formal proofs.

We fix a signature τ for this section and everything below is assumed to be in this signature.

3.A. The axioms of FOL(τ)

Unlike the definition of a τ -theory, the axioms of FOL(τ) include formulas with free variables.
Indeed, in the course of a proof, even if our goal is to prove a sentence, we often make
quantified variables free. For example, when proving

∀f ∶ [0,1] → R, f is continuous ⇒ f is bounded, (∗)

we start the proof by letting the variable f denote a function and this variable stays free
until the end of the proof, where we generalize by saying “but f is arbitrary, so (∗) is true”.

We need the following technical definition in order to state the axioms that involve vari-
ables.

Definition 3.1. Let ϕ be a formula and t be a term. We say that t is free for v in ϕ (or t is
OK to be plugged-in for v in ϕ) if neither v nor any variable in t is quantified in ϕ. If t is free
for v in ϕ, we define ϕ(t/v) to be the formula obtained from ϕ by replacing all occurrences
of v by t.

Convention 3.2. Below, whenever we write ϕ(t/v), it is assumed that t is free for v in ϕ.

4A partial function f ∶X ⇀ Y is a function whose domain is a (possibly empty) subset of X.
5We are using the Axiom of Choice here.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 19

Convention 3.3. From now on, we treat ϕ∨ψ;ϕ∧ψ;∃vϕ as abbreviations for ¬ϕ→ ψ;¬(ϕ→
¬ψ);¬∀v¬ϕ.

The following are the axioms (or axiom schemes) of FOL(τ).

Propositional axioms. For all τ -formulas ϕ,ψ,χ, we have:

Axioms for →:

(1) ϕ→ (ψ → ϕ)
(2) (ϕ→ ψ) → [(ϕ→ (ψ → χ)) → (ϕ→ χ)]

Axioms for ¬:

(3) (ϕ→ ψ) → [(ϕ→ ¬ψ) → ¬ϕ]
(4) ¬¬ϕ→ ϕ

(5a) (ϕ→ ψ) → (¬ψ → ¬ϕ); (5b) (¬ψ → ¬ϕ) → (ϕ→ ψ)

Axioms for ∧:

(6) ϕ→ [ψ → (ϕ ∧ ψ)]
(7a) (ϕ ∧ ψ) → ϕ; (7b) (ϕ ∧ ψ) → ψ
(8) (ϕ ∧ ¬ϕ) → ψ

Axioms for ∨:

(9) (ϕ→ χ) → [(ψ → χ) → ((ϕ ∨ ψ) → χ)]
(10a) ϕ→ (ϕ ∨ ψ); (10b) ψ → (ϕ ∨ ψ)

Quantifier axioms. For all τ -formulas ϕ,ψ, all τ -terms t, and all variables u, v, the follow-
ing FOL(τ) words are taken as axioms of FOL(τ) whenever they form valid τ -formulas6:

(11) (∀v(ψ → ϕ)) → (ψ → ∀uϕ(u/v)) [whenever v does not occur in ψ]

Remark 3.4. What we really want to write here is

(∀v(ψ → ϕ)) → (ψ → ∀vϕ(v)),

which is more readable and makes sense immediately, but this is not a (valid) formula
according to Convention 2.18.

(12) Instantiation: ∀vϕ→ ϕ(t/v)
(13) Generalization: ϕ→ ∀uϕ(u/v)

Remark 3.5. Here again, what we really want to write here is ϕ → ∀vϕ(v), but if v is
free ϕ (which is exactly when this axiom has content and will be used), ϕ → ∀vϕ(v) is
not be a (valid) formula according to Convention 2.18.

(14) ∃-elimination: (ϕ→ ψ) → ((∃vϕ) → ψ) [whenever v does not occur in ψ]

Remark 3.6. This axiom is used in proving a statement of the form (∃vϕ) → ψ; for
example, the statement “a convergent sequence (xn) is bounded” is of this form as we
can write

(∃L ∈ R, lim
n→∞

xn = L) → ((xn) is bounded).

6This would be the case if we assume that u does not occur in either of ϕ and ψ, v does not occur in t,
and t is free for v in ϕ.

20 ANUSH TSERUNYAN

In the course of the proof, we assume the hypothesis ∃vϕ in order to prove the conclusion
ψ. To use the hypothesis, we need to get rid of (eliminate) the existential quantifier ∃v,
which we do by saying “let v denote an object for which ϕ(v) is true”; indeed, in our
example, we would write “let L be the limit of (xn)”. Then we use the statement ϕ(v)
to prove ψ, so in the end, what we would actually proven is ϕ(v) → ψ. But what we
initially wanted was (∃vϕ) → ψ, and the ∃-elimination axiom is what allows us to derive
the latter statement from the former.

(15) Instance-to-existence: ϕ(t/v) → ∃vϕ

Equality axioms. For every n ∈ N, each n-ary relation symbol R and n-ary function symbol
f in τ , we have:

(16) v = v; v = v′ → v′ = v; (v = v′ ∧ v′ = v′′) → v = v′′

(17) (⋀ni=1 vi = wi) → (R(v1, ..., vn) → R(w1, ...,wn))
(18) (⋀ni=1 vi = wi) → (f(v1, ..., vn) = f(w1, ...,wn))

We now state the only rule of inference we need to derive new statements from axioms.

Rule of inference. For every τ -formula ϕ,ψ, we have:

(19) Modus Ponens: ϕ,ϕ→ ψ Ô⇒ ψ

Definition 3.7. Let ϕ be a τ -formula and v⃗ be the vector of free variables of ϕ7, so ∀v⃗ϕ is
a sentence. We say that ϕ is satisfied/true in a τ -structure A, and write A ⊧ ϕ, if A ⊧ ∀v⃗ϕ.

The proof of the following lemma is an easy but tedious verification:

Lemma 3.8. All of the axioms above are true in every τ -structure and Modus Ponens
preserves the truth.

3.B. Formal proofs

Definition 3.9. Let T be a theory and ϕ be a formula. A proof of ϕ from T is a finite
sequence ϕ1, ϕ2, ...ϕn of formulas such that ϕn ≐ ϕ and for each i

either ϕi is an axiom of FOL(τ),
or ϕi ∈ T ,
or ϕi follows from the previous ϕj-s by Modus Ponens, i.e. for some j, k < i (not necessarily
j < k), ϕk ≐ ϕj → ϕi; in this case, we say that ϕi is obtained by Modus Ponens from ϕj, ϕk.

Definition 3.10. We say that T proves ϕ, and write T ⊢ ϕ, if there exists a proof of ϕ from
T . When T = ∅, we just write ⊢ ϕ.

The following example illustrates formal proofs and how tedious (even hard) it can be to
find formal proofs of statements that are “obviously” true.

Example 3.11. Here is a formal proof of θ → θ from the empty theory, for all formulas θ:

(i) (θ → (θ → θ)) → [(θ → ((θ → θ) → θ)) → (θ → θ)] [Axiom (2) for ϕ ≐ χ ≐ θ and
ψ ≐ (θ → θ)],

(ii) θ → (θ → θ) [Axiom (1) for ϕ ≐ ψ ≐ θ],
(iii) (θ → ((θ → θ) → θ)) → (θ → θ) [Modus Ponens (i), (ii)],

7We mean that v⃗ includes all of the free variables of ϕ and no other variables.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 21

(iv) θ → ((θ → θ) → θ) [Axiom (1) for ϕ ≐ θ and ψ ≐ (θ → θ)],
(v) θ → θ [Modus Ponens (iii), (iv)].

The following proposition justifies why we introduced a proof system and formal proofs:

Proposition 3.12 (Soundness). If T ⊢ ϕ then T ⊧ ϕ.

Proof. This follows by induction on the length of the formal proof of ϕ and Lemma 3.8. �

Lemma 3.13 (Deduction theorem). For a theory T , a sentence χ and a formula ϕ,

T,χ ⊢ ϕ ⇐⇒ T ⊢ χ→ ϕ.

Proof. ⇐∶ Follows by an application of Modus Ponens.
⇒∶ Letting ϕ1, ..., ϕn with ϕn ≐ ϕ be a proof of ϕ from T ∪ {χ}, we show that T ⊢ χ → ϕ by
induction on n.

Case n = 1: ϕ ≐ ϕ1 is an axiom of FOL(τ) or is in T . Then T ⊢ ϕ, and by Axiom (1),
T ⊢ ϕ→ (χ→ ϕ), so Modus Ponens gives T ⊢ χ→ ϕ.

Case n = 1: ϕ ≐ ϕ1 ≐ χ. Then T ⊢ χ → ϕ is the same as T ⊢ ϕ → ϕ, which is done in
Example 3.11.

Case n ⇒ n + 1: ϕ ≐ ϕn+1 is obtained by Modus Ponens. Then there are i, j ≤ n such that
ϕj ≐ ϕi → ϕ. By the inductive hypothesis, T ⊢ χ→ ϕi and T ⊢ χ→ (ϕi → ϕ). By Axiom (2),

T ⊢ (χ→ ϕi) → [(χ→ (ϕi → ϕ)) → (χ→ ϕ)]

so applying Modus Ponens twice, we get T ⊢ χ→ ϕ. �

Let S be a set of symbols neither of which is in τ . Then we denote by τ(S) the extension
of τ obtained by adding to it the symbols in S as constant symbols. If S = {s1, ..., sn} is
finite, we just write τ(s1, ..., sn).

Lemma 3.14 (Constant Substitution). Let c be a symbol that is not in τ and let u be free
in a τ -formula λ. For a τ -theory T ,

T ⊢ λ(c/u) ⇐⇒ T ⊢ λ,

where in the first statement T is viewed as a τ(c)-theory.

Proof. The direction ⇐ follows by applications of the generalization (13) and instantiation
(12) axioms, followed by Modus Ponens. The reverse implication is a straightforward in-
duction on the length of the formal proof. This comes down to proving that if λ(c/u) is an
axiom, then so is λ, which is only worth checking for quantifier axioms. �

3.C. Syntactic versions of consistency and completeness

In this subsection, we define analogues of the notions defined in Subsection 2.E using ⊢
instead of ⊧.

Definition 3.15. A τ -theory T is said to be

● (syntactically) consistent if there is no τ -sentence ϕ such that T ⊢ ϕ ∧ ¬ϕ;
● (syntactically) τ -complete (or just complete if τ is understood) if for any τ -sentence ϕ,
T ⊢ ϕ or T ⊢ ¬ϕ;

22 ANUSH TSERUNYAN

Note that a satisfiable theory is consistent by the Soundness of the proof system. Also,
any inconsistent theory is automatically complete because one can easily show that ⊢⊥→ ϕ
for any τ -formula ϕ. Clearly, Th(M) is complete for any τ -structure M.

Lemma 3.16 (About consistency). Let T be a τ -theory.

(a) T is consistent if and only if there is a sentence χ such that T ⊬ χ.
(b) T is consistent if and only if every finite subset of T is consistent.
(c) For any sentence χ, T ∪ {χ} is inconsistent if and only if T ⊢ ¬χ.
(d) If T is consistent, then for any sentence χ, at least one of T ∪ {χ} and T ∪ {¬χ} is

consistent.
(e) If ∃vϕ(v) is a sentence, T ∪{∃vϕ(v)} is consistent, and c is a constant symbol that does

not occur in T ∪ {∃vϕ(v)}, then T ∪ {ϕ(c)} is consistent.

Proof. Part (a) just expresses the fact that once a theory proves a contradiction, then it
proves every sentence. (b) follows from the fact that proofs are finite. We prove the rest in
detail.

The right-to-left direction of (c) is immediate, and we show the other direction. Assume
T ∪ {χ} is inconsistent and hence T,χ ⊢⊥. By the Deduction theorem (this is where we
really need this theorem), T ⊢ χ →⊥, and hence, by Axiom (4) and Modus Ponens, we get
T ⊢ ⊺ → ¬χ. But ⊺ is an axiom (more precisely, it follows from Axioms (16) and (13), and
Modus Ponens), so T ⊢ ⊺, and hence by applying Modus Ponens again, we get T ⊢ ¬χ.

For (d), we prove the contrapositive. Assume both T ∪{χ} and T ∪{¬χ} are inconsistent.
Then by (c), T ⊢ ¬χ and T ⊢ ¬¬χ. Thus T ⊢ χ ∧ ¬χ and hence is inconsistent.

For (e), we also prove the contrapositive. Assume T ∪{ϕ(c)} is inconsistent. Then by (c),
T ⊢ ¬χ(c). By the constant substitution lemma (Lemma 3.14), T ⊢ ¬ϕ(v), and by Axiom
(13), T ⊢ ∀v¬ϕ(v), so T ⊢ ¬∃vϕ(v). Thus, by (c), T ∪ {∃vϕ(v)} is inconsistent. �

Note the following “compactness” phenomenon: if T ⊢ ϕ, then there is a finite T0 ⊆ T
with T0 ⊢ ϕ. This is an immediate consequence of the fact that formal proofs are finite and
hence they only use finitely many axioms from T . This “compactness” statement is actually
equivalent to the fact that the following topological space is compact: let T be the set of all
consistent fully complete theories and take the topology generated by the sets of the form
⟨ϕ⟩ ∶= {T ∈ T ∶ T ⊢ ϕ}, where ϕ ranges over all τ -sentences. The proof of the equivalence
uses the following lemma and is left as an exercise.

Lemma 3.17. Any (syntactically) consistent τ -theory T has a consistent full completion,
i.e. there exists a consistent fully complete τ -theory T ′ ⊇ T .

Proof. We give two proofs: one for countable τ and one for arbitrary τ ; the first one is a
(seemingly) more hands on construction and students not familiar with Zorn’s lemma may
find it more helpful.

Proof for countable τ . In this case there are only countably many formulas, so we can enu-
merate all sentences (ϕn)n∈N. Put T0 ∶= T , and recursively construct an increasing sequence
(Tn)n∈N of consistent theories as follows. Assuming that Tn is defined and is consistent, put
Tn+1 ∶= Tn ∪ {ϕn} if Tn ⊬ ¬ϕn, and put Tn+1 ∶= Tn ∪ {¬ϕn}, otherwise. It follows from (c)
of Lemma 3.16 that Tn+1 is consistent. Finally, put T ′ ∶= ⋃n Tn. Note that T ′ ⊇ T and T ′

is consistent: indeed, if it was inconsistent, then, by (b) of Lemma 3.16 some finite subset
F ⊆ T ′ would be inconsistent, but this F would be trapped in some Tn, i.e. F ⊆ Tn, making

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 23

Tn inconsistent, which is a contradiction. Lastly, it is immediate from the construction that
T ′ is fully complete.

Proof for arbitrary τ . By (b) of Lemma 3.16, inconsistent theories have inconsistent finite
subsets, so arbitrary increasing unions of consistent theories are consistent. Thus, by Zorn’s
lemma, there is a ⊆-maximal consistent theory T ′ ⊇ T and it remains to show that it is fully
complete. Indeed, for any τ -sentence ϕ, one of T ′ ∪ {ϕ} or T ′ ∪ {¬ϕ} is consistent by (d) of
Lemma 3.16, so, by maximality, T ′ must already contain ϕ or ¬ϕ. �

4. Completeness of FOL and its consequences

Proposition 3.12 (the soundness of the proof system) says that if we have a “first order
(finite) certificate” that something is true (is a syntactic consequence of T), then it is indeed
true (in every model of T). What about the converse: is the validity of ϕ in every model
of T witnessed by an actual formal proof from T? If the answer to this question was
no, mathematicians would appear in a pretty rough shape since it would be possible that
some (first order) statement was true in every model of T (e.g. Hilbert’s Nullstellensatz for
algebraically closed fields), but we would have no (first order) way of proving it. Fortunately,
the answer is YES and that is the content of the Completeness Theorem to which this section
is devoted.

4.A. Syntactic-semantic duality, completeness and compactness

We have already defined some syntactic and semantic notions for a theory T , and, in this
subsection, we draw analogies between them. Finally, we state the Completeness theorem,
which in my opinion should have been called the Syntactic-Semantic Duality theorem. It is
called Completeness because it shows that the proof system defined in the previous section
is “complete” in the sense that the axioms and rules of inference that we threw in are enough
to prove any statement that is semantically implied by T .

The following table compares the notions we have defined.

Notions Syntactic (Proof-theoretic) Semantic (Model-theoretic)
Consistency T ⊬⊥ T ⊭⊥, i.e. T is satisfiable
Implication T ⊢ ϕ T ⊧ ϕ

Completeness ∀ϕ, T ⊢ ϕ or T ⊢ ¬ϕ ∀ϕ, T ⊧ ϕ or T ⊧ ¬ϕ
Compactness T ⊢ ϕ Ô⇒ ∃ finite T0 ⊆ T , T0 ⊢ ϕ T ⊧ ϕ Ô⇒ ∃ finite T0 ⊆ T , T0 ⊧ ϕ

Although the statements in each row are clearly analogous, there is no immediate reason
to think that they may be equivalent. For example, it is not clear at all whether the semantic
version of the compactness statement is true. This is why one should appreciate the following.

Theorem 4.1 (Completeness of FOL; Gödel, 1929). Every consistent τ -theory T is satisfi-
able. In fact, it has a model of cardinality at most max{∣τ ∣,ℵ0}.

Remark 4.2 (silly). The completeness of FOL should NOT be confused with the completeness
of a theory; these are two completely different notions, they just use the same adjective
(unfortunate terminology). I put this remark here because I have had students ask me
whether Gödel’s Completeness theorem contradicts his Incompleteness theorem. The first
one means Completeness of FOL, the second means Incompleteness of PA (as a theory).

24 ANUSH TSERUNYAN

Before proceeding with a proof of this theorem, let us mention a couple of very important
immediate corollaries.

Corollary 4.3 (Syntactic-semantic duality). For a τ -theory T and a τ -sentence ϕ,

T ⊢ ϕ ⇐⇒ T ⊧ ϕ.

In particular, the statements in each row of the above table are equivalent.

Proof. We only prove that T ⊧ ϕ implies T ⊢ ϕ since the rest easily follows from it. We show
the contrapositive. Suppose T ⊬ ϕ, in particular T is consistent (inconsistent theories prove
everything). Moreover, T ∪ {¬ϕ} is consistent by (c) of Lemma 3.16, so the Completeness
theorem gives a model M ⊧ T ∪ {¬ϕ}, and hence, T ⊭ ϕ. �

Remark 4.4. If one somehow manages to prove a first-order statement ϕ about all models of
T using methods from outside of FOL, the syntactic-semantic duality implies that there is
a first-order proof of ϕ from T and using external methods was an overkill.

A theory is called finitely satisfiable if every finite subset of it is satisfiable. Rephrasing
the semantic version of the compactness statement above, we get (probably) the most useful
theorem of logic:

Theorem 4.5 (Compactness). If a τ -theory T is finitely satisfiable, then it is satisfiable. In
fact, it has a model of cardinality at most max{∣τ ∣,ℵ0}.

Proof. Because T is finitely satisfiable, every finite subset of it is consistent. Hence T is
consistent and the Completeness theorem applies. �

The Compactness theorem has a wide range of applications and we will mention some of
them in the upcoming lectures.

4.B. Henkin’s proof of Gödel’s Completeness Theorem

In this subsection we give a proof of Gödel’s Completeness theorem that is due to Henkin.
We start with a consistent theory T in a signature τ and our goal is to build a model for

it. To appreciate the difficulty of this task, think of the following particular case: given a set
of (first order) conditions together with the field axioms, how hard would it be to construct
a field satisfying those conditions. In this example at least, our knowledge of algebra may
help finding or constructing such a field, but to build a model for T , it’s not even clear where
to start.

The first question we need to address is what underlying set we should take for our future
model. In general, the objects in the underlying sets of different structures are of different
nature; for example, the objects in the group GLn(R) are matrices, whereas those in the
group Sn are permutations. But of course, we can always take isomorphic copies of these
structures whose underlying sets are build of the same material, such as names or symbols.
More precisely, given a structure A ∶= (A, τ), we can give a name ca to each element a ∈ A,
obtaining a new underlying set CA ∶= {ca ∶ a ∈ A} and a τ -structure A′ ∶= (CA, τ) isomorphic
to A, but the objects in the underlying set of A′ are just names (i.e. symbols). It’s like
taking GLn(R) and replacing the matrices with their pictures (JPEG images if you will).

We can use this idea of naming the elements of a given structure even further. Given
Th(A), we usually cannot recover the structure A even if we know the underlying set A.
However, we can upgrade our signature τ so that we can by adding names for elements of A.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 25

Definition 4.6. For a τ -structure A, define a new signature

τA ∶= τ ∪ {ca ∶ a ∈ A} ,

where the ca are treated as constant symbols in τA. Let A′ ∶= (A,A) denote the expansion
of A to a τA-structure, where the constant symbols ca are interpreted respectively: cA

′

a ∶= a,
for every a ∈ A. Call this A′ the natural τA-expansion of A. Call Th(A′) the elementary
diagram of A, and denote it by ElDiag(A). Also, denote by Diag(A) the set of all quantifier
free sentences in Th(A′) and call it the diagram of A.

Now the structure A′ ∶= (A, τA) is such that every element in its underlying set A has a
name in the signature τA, so Th(A′) will tell us exactly how the constant symbols, function
symbols and relation symbols in τ are interpreted in A; for example, if a1, a2, a3 ∈ A and
fA′(a1, a2) = a3, then Th(A′) would contain the τA-sentence f(ca1 , ca2) = ca3 ; for groups this
would correspond to the multiplication table. Moreover, ElDiag(A) also includes quantified
statements about the elements of A. In particular, A ⊧ ∃vϕ if and only if ∃vϕ ∈ ElDiag(A).
Furthermore, the latter holds if and only if ϕ(c/v) ∈ ElDiag(A), for some constant symbol
c ∈ τA. We refer to this c as a Henkin witness below.

Why is this useful for us in proving the Completeness theorem? Well, we are to build a
model of T , so we have to define interpretations of the symbols in τ so they agree with T .
Therefore, it would be really nice if T could tell us how exactly to define those interpretations
because if we do exactly as T says, then we would naturally end up with a τ -structure
modeling the quantifier free sentences of T . It would be even better, if T could tell us which
formulas of the form ∃vϕ our future model should satisfy. In other words, we would like our
T to “look like” an elementary diagram of some τ -structure, so we can take that τ -structure
as our model. The following definition makes all this precise.

Definition 4.7. For a signature σ, a σ-theory H and a σ-formula ∃vϕ, we say that H admits
a Henkin witness for ∃vϕ if

either H ⊬ ∃vϕ,
or for some constant symbol c ∈ σ, H ⊢ ϕ(c/v).

A σ-theory H is called a σ-Henkin theory (or just a Henkin theory) if H is consistent, fully
complete, and admits Henkin witnesses for every σ-formula of the form ∃vϕ.

As expected, for a τ -structure A, ElDiag(A) is an example of a Henkin theory (in the
signature τA).

Note that the existence of a σ-Henkin theory implies that σ has at least one constant
symbol. Our initial signature τ may not contain enough constants to be used as Henkin
witnesses, so we artificially create them and throw them into τ ; more precisely, letting
κ ∶= max{∣τ ∣,ℵ0}, we take a set D ∶= {dn}n≤κ of distinct constant symbols not in τ and put
τ̄ ∶= τ ∪D.

Lemma 4.8 (Constructing a Henkin theory). Any consistent τ -theory T admits a τ̄ -Henkin
extension H ⊇ T .

Proof. We will prove this assuming τ is countable to make the exposition easier to understand
for those readers who are not familiar with the ordinals and cardinals. However, the readers
who are familiar are invited to prove this for general τ . Note that for countable τ , κ = ℵ0,
so D ∶= {dn}n∈N.

26 ANUSH TSERUNYAN

Since τ̄ is countable, there are exactly ℵ0-many τ̄ -sentences, so we enumerate them:
(ϕn)n∈N. We emphasize, that these ϕn range over all τ̄ -sentences, not just τ -sentences. Let-
ting τn ∶= τ ∪ {di ∶ i < n}, for n ≥ 0, we recursively construct an increasing sequence (Hn)n∈N,
where each Hn is a consistent fully τn-complete theory, as follows: let H0 be a τ0-completion
of T and suppose that Hn is defined and satisfies the required conditions, i.e. it is a con-
sistent fully τn-complete theory. If Hn is already a τn-Henkin theory, then let Hn+1 be a
consistent full τn+1-completion of Hn. Otherwise, let m ∈ N be the least index such that
ϕm ∈ H and ϕm ≐ ∃vϕ but H doesn’t contain a Henkin witness for it. Because ∃vϕ ∈ Hn

and Hn is consistent, so must be Hn ∪ {ϕ(dn)} by (e) of Lemma 3.16 because dn does not
occur in Hn. Thus, we let Hn+1 be a consistent full τn+1-completion of Hn∪{ϕ(dn)}, and this
finishes the construction of the sequence (Hn)n∈N. Finally, taking H ∶= ⋃n∈NHn, we leave it
as an exercise to verify that H is a τ̄ -Henkin theory. �

Having constructed a τ̄ -Henkin theory H, we now construct a model of H, i.e. a τ̄ -
structure satisfying H and then take its reduct to the signature τ (i.e. forget the names of
Henkin witnesses).

Lemma 4.9. Let σ be a signature and H a σ-Henkin theory. For any σ-term t with no
variables, there is a constant symbol c ∈ σ with t = c ∈H.

Proof. We aim at getting such c ∈ σ as a Henkin witness to ∃vϕ(v), where ϕ(v) ≐ t = v,
so it is enough to show that H ⊢ ∃vϕ. But, by Axioms (16), (13), and (12), H ⊢ t = t,
and the latter sentence is precisely ϕ(t/v). Thus, H ⊢ ϕ(t/v), so using Axiom (15), we get
H ⊢ ∃vϕ. �

Lemma 4.10 (Constructing a model for a Henkin theory). If H is a Henkin theory in a
signature σ, then it has a model. In fact, it has a model whose cardinality is at most the
cardinality of the set of constants in σ.

Proof. As our first attempt, we take the set of constant symbols C of σ as the universe of
our future model C with the following interpretations: for all e1, ..., en, e ∈ C,

cC = c, for every constant symbol c in σ
RC(e1, ..., en) ⇐⇒ R(e1, ..., en) ∈H, for every n-ary relation symbol R in σ

fC(e1, ..., en) = e ⇐⇒ f(e1, ..., en) = e ∈H, for every n-ary function symbol f in σ.

This construction almost works except that it may well be that c = c′ ∈ H, for distinct
constant symbols c and c′ in C. Because of this, C is not even a σ-structure since the last
clause defines a multi-valued function. Even if we managed to choose a single valued branch
for fC, C would still not be a model of H because it would not satisfy c = c′. So what we
do is we mod out C by the equivalence relation c = c′ ∈ H. More precisely, for all c, c′ ∈ C,
define

c ∼ c′ ⇐⇒ c = c′ ∈H.

It follows from Axioms (12) for equality that ∼ is an equivalence relation on C.
Put M ∶= C/ ∼, so M = {[c] ∶ c ∈ C}, where [c] denotes the equivalence class of c. We define

a σ-structure M with universe M and the following interpretations: for all e1, ..., en, e ∈ C,

cM = [c], for every constant symbol c in σ
RM([e1], ..., [en]) ⇐⇒ R(e1, ..., en) ∈H, for every n-ary relation symbol R in σ

fM([e1], ..., [en]) = e ⇐⇒ f(e1, ..., en) = e ∈H, for every n-ary function symbol f in σ.

Claim 1. M is well-defined.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 27

Proof of Claim. One has to prove that the definitions of RM and fM do not depend on the
choice of the representatives of the equivalence classes, but this immediately follows from
Axioms (17) and (18) of FOL(τ̄). Moreover, for f as above, one has to verify that for all
e1, ..., en ∈ C, there exists e ∈ C such that f(e1, ..., en) = e ∈ H, but this is an instance of
Lemma 4.9. ⊣

Claim 2. For every σ-term t with no variables and c ∈ C, tM = [c] if and only if t = c ∈H.

Proof of Claim. We do induction on the construction (length) of t. The case of t being a
variable is excluded, so the only base case is t ≐ e, for a constant symbol e ∈ σ follows from
the definitions of ∼ and M .

Now assume that t ≐ f(t1, ..., tn). Let c1, ..., cn ∈ σ such that tMi = [ci]. By induction, we
have that ti = ci ∈ H, so by Axiom (18), we also have that H ⊢ f(t1, ..., tn) = f(c1, ..., cn).
But then, the definition and well-definedness of M gives

fM([c1], ..., [cn]) = [c] ⇐⇒ f(c1, ..., cn) = c ∈H,

and hence, H ⊢ f(t1, ..., tn) = c, by Axiom (16). ⊣

Claim 3. M ⊧H.

Proof of Claim. We show that for every σ-formula ϕ and c1, ..., cn ∈ C,

M ⊧ ϕ([c1], ..., [cn]) ⇐⇒ ϕ(c1, ..., cn) ∈H,

by structural induction on the construction of ϕ. The case of equality is handled by the
previous claim, and the case of a relation symbol follows from the same claim and the
definition of M using Axioms (16) and (17). The case of ¬ follows easily from the induction
hypothesis and the consistency and full completeness of H, while the case of ∧ follows from
the induction hypothesis and the FOL(τ̄) axioms for ∧. We now handle the remaining case
of ϕ([c1], ..., [cn]) ≐ ∃vψ([c1], ..., [cn], v) as follows:

M ⊧ ϕ([c1], ..., [cn]) ⇐⇒ there is [b] ∈M such that M ⊧ ψ([c1], ..., [cn], [b])

[by induction] ⇐⇒ there is b ∈ C such that ψ(c1, ..., cn, b) ∈H

⇐⇒ ∃vψ(c1, ..., cn, v) ∈H,

where in the last equivalence, Ô⇒ is by Axiom (15) and ⇐Ô is because H admits a Henkin
witness for ∃vψ(c1, ..., cn, v). ⊣

The last claim finishes the proof of the lemma. �

Proof of the Completeness Theorem 4.1 (Henkin, 1949). By Lemma 4.8, there is a τ̄ -Henkin
theory H ⊇ T . Now applying Lemma 4.10 to σ ∶= τ̄ and H, we get a model M of H of
cardinality at most ∣σ∣ and hence at most κ ∶= max{∣τ ∣,ℵ0}. Finally, take the reduct of M
to the signature τ . �

From now on, we will not differentiate between the syntactic and semantic notions in the
table in Subsection 4.A above.

28 ANUSH TSERUNYAN

4.C. The Skolem “paradox”

The Completeness theorem has the following striking consequence: if ZFC is consistent
(which we really hope it is), then it has a countable model. This is maybe strange because
that countable model M believes that there is an uncountable set since Cantor’s theorem
that R is uncountable is true in M. Does this imply that ZFC is inconsistent?

The answer is of course NO and here are the two reasons why (the main reason is (2)):

(1) It may well be that M = N with a binary relation ∈M defined on it. So what if somehow M
satisfies the statement that reads “there is an uncountable set”? It is just some statement
about this binary relation ∈M and it does not imply anything about the actual sets and
the cardinality of M .

(2) Even if M was a set of sets and ∈M was the true ∈, then the countability of M would
simply imply that M’s version of the real numbers, RM, is indeed countable (for us),
i.e. there is a bijection of RM with N. This bijection is a set (any function is a set
of pairs), but it may not be an element of M . In fact, since M satisfies the statement
“RM is uncountable”, we conclude that NO bijection of RM with N is an element of M .
In other words, M does not “see” the countability of RM and thus thinks that RM is
uncountable. It’s like how people thought the world was endless before they discovered
it was round since all they could see was the ocean up to the line of the horizon and for
all they knew it continued forever. The only difference is that we eventually obtained
the knowledge that Earth is round and finite, while M never will.

4.D. Upward Löwenheim–Skolem theorem

One of the numerous consequences of the compactness is the following general statement
about cardinalities of models.

Theorem 4.11 (Upward Löwenheim–Skolem, weak version). If a τ -theory T has an infinite
model, then it has a model of any cardinality κ ≥ max{∣τ ∣,ℵ0}.

Proof. Put τ̄ ∶= τ ∪ {cα}α<κ, where cα are constant symbols that are not in τ . Define

T ′ ∶= T ∪ {cα ≠ cβ ∶ α ≠ β,α, β < κ} .

T ′ is finitely satisfiable since it has an infinite model. Thus, by the Compactness theorem,
T ′ has a model M of cardinality at most κ since ∣τ̄ ∣ = κ ≥ ℵ0. On the other hand, ∣M ∣ ≥ κ
since cMα ≠ cMβ for distinct α,β < κ. Thus ∣M ∣ = κ. �

This theorem implies for example that PA has uncountable models!
Recall that the Löwenheim–Skolem theorem gave us an elementary substructure A of a

given τ -structure B of any cardinality κ ≤ ∣B∣ as long as κ ≥ max{∣τ ∣,ℵ0}. We would like
to also get an upward version of this, i.e. start with a τ -structure A and get an elementary
extension B ≻ A of any cardinality ≥ max{∣A∣, ∣τ ∣,ℵ0}. To achieve this, we may consider
applying the previous theorem to Th(A). However, this would only give us a structure B
that is elementarily equivalent to B, i.e. A ≡ B, whereas we want A ↪e B. So instead, we
apply the previous theorem to the elementary diagram ElDiag(A) of A (see Definition 4.6),
and the following lemma tells us why.

Lemma 4.12. For τ -structures A,B, if an expansion B′ of B is a model of ElDiag(A),
then A↪e B. In particular, there is an isomorphic copy of B containing A as an elementary
substructure.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 29

Proof. Let f ∶ A→ B be the map given by mapping each element a ∈ A to the interpretation
of B′ of the corresponding constant symbol ca, i.e. a ↦ cB

′

a . It is straightforward to check
that f is an elementary embedding. �

Theorem 4.13 (Upward Löwenheim–Skolem). Any infinite τ -structure A has an elementary
extension of any cardinality κ ≥ max{∣A∣, ∣τ ∣,ℵ0} ; more precisely, there is a τ -structure B
such that ∣B∣ = κ and A ≺ B.

Proof. By the weak upward Löwenheim–Skolem, get a model B of ElDiag(A) of cardinality
κ and apply the previous lemma. �

4.E. Nonstandard models of arithmetic

A nonstandard model of Peano arithmetic is any model of PA that is not isomorphic to
N ∶= (N,0, S,+, ⋅). As mentioned above, PA has uncountable models and hence they are
nonstandard. In this subsection we construct a countable nonstandard model of PA.

For the rest of the subsection we work in the signature τarthm ∶= (0, S,+, ⋅) of arithmetic.
For each n ∈ N, recursively define a τarthm-term ∆(n) as follows:

{
∆(0) ≐ 0
∆(n + 1) ≐ S(∆(n))

.

Note that for every n ∈ N, N ⊧∆(n) = n and hence N = {∆(n)N ∶ n ∈ N}.

Proposition 4.14. The theory Th(N), and hence also PA, admits a countable nonstandard
model.

Proof. Let w be a new constant symbol not in τarthm and consider the extension σ ∶= τarthm ∪
{w}. Put

T ∶= Th(N) ∪ {w ≠ ∆(n) ∶ n ∈ N} .

T is finitely satisfiable because for any finite T0 ⊆ T , letting n be the maximum number with
w ≠ ∆(n) ∈ T0, the expansion of N to a σ-structure with w being interpreted as n+1 satisfies
T0. Thus, by the Compactness theorem, T has a countable model M.

To see that this M is nonstandard, assume for contradiction that there is an isomorphism
h ∶ N → M. Since h(∆(n)N) = ∆(n)M, h[N] = {∆(n)M ∶ n ∈ N}. But then wM ∉ h[N] and
thus h is not surjective, a contradiction. �

4.F. From finite to infinite and back

The Compactness theorem provides a transfer principle between finitary and infinitary state-
ments, and we discuss both directions here.

4.F.1. From finite to infinite. Given that some property P holds for all finite subsets of a
given structure, we can often conclude via the Compactness theorem that P holds for the en-
tire structure. For example, if every finite subgraph of a graph is k-colorable, then such is the
entire graph. Similarly, if every finite subgraph admits a perfect matching, then so does the
entire subgraph. In both of these statements, P is of the form ∃ a relation R with property Q.
Proofs of such statements involve giving names to elements of the structure (i.e. adding con-
stant symbols to the signature) and to the relation we are after (i.e. adding a relation symbol
R to the signature). Then, as long as Q is a first-order expressible property, we can write a

30 ANUSH TSERUNYAN

sentence for each finite subset F of our structure that states that R has the property Q on
F . The resulting theory would be finitely satisfiable by our hypothesis, and thus satisfiable
by the Compactness theorem. This yields a relation R with the property Q being satisfied
on the elements of our original structure.

In other words, the Compactness theorem allows a switch of quantifiers: from ∀∃ to ∃∀.
Indeed, we are given that for all finite subsets F there is a certain object R that “works”
for F , and what we get is that there is a certain object R that “works” for all F at once.

4.F.2. From infinite to finite. In arithmetic combinatorics and Ramsey theory, it often hap-
pens that one proves an infinitary theorem (e.g. theorems of Ramsey, van der Waerden,
Szemerédi, etc.) by infinitary means (i.e. idealistic tools, no keeping track of ε’s and bound-
ing errors) and then deduces its finitary version via a so-called compactness-and-contradiction
argument. The latter uses the fact that product of finite topological spaces is compact by Ty-
chonoff’s theorem. Here we give an example of such a proof using the Compactness theorem
rather than a compactness-and-contradiction argument. Our example will be the deduction
of the finite Ramsey theorem from its famous infinite counterpart.

For a set S, let [S]2 denote the set of two element subsets of S (think of it as the set of
edges of the undirected complete graph on S). Given a 2-coloring of [N]2, i.e. a function
c ∶ [N]2 → {0,1}, a set E ⊆ [N]2 is said to be monochromatic if all elements of E have the same
color, i.e. c⇂E is constant. A set A ⊆ N is called monochromatic if [A]2 is monochromatic.

Theorem 4.15 (Infinite Ramsey). For any 2-coloring of [N]2, there exists an infinite
monochromatic subset of N.

Proof. For a ∈ N and A ⊆ N, put (a,A) ∶= {{a, a′} ∶ a′ ∈ A ∖ {a}}. Set A0 ∶= N and take
sequences an ∈ N and An ⊆ N satisfying:

(i) an ∈ An,
(ii) An+1 ⊆ An is infinite and (an,An+1) is monochromatic.

It is easy to see that such sequences (an)n∈N and (An)n∈N exist (define them recursively). Call
an red if all elements of (an,An+1) have color 0, otherwise call it blue. Clearly, there is a sub-
sequence (ank

)k∈N with all ank
having the same color (red or blue). Now it is straightforward

to check that A ∶= {ank
}k∈N is monochromatic. �

Example 4.16. Infinite Ramsey theorem can be used to show that every sequence (xn)n∈N
of reals has a monotone subsequence. Indeed, color a pair n < m blue if xn < xm, and red
otherwise.

We now derive the Finite Ramsey theorem from this using the Compactness theorem. The
original combinatorial proof is much messier (look it up).

Let n̄ ∶= {0,1, ..., n − 1}.

Theorem 4.17 (Finite Ramsey). For every m ∈ N, there exists n ∈ N such that for any
2-coloring of [n̄]2, there exists a monochromatic subset A ⊆ n̄ of cardinality m.

Proof. Let τ be the signature containing constant symbols cn, for every n ∈ N, and a binary
relation symbol R (think of R as a symbol for coloring: the color of {x, y} is 1 if R(x, y)
and 0 otherwise). Fix m ∈ N, and for each n ∈ N, let ϕn be a τ -sentence expressing that
c0, c1, ..., cn−1 are pairwise distinct and the set {c0, c1, ..., cn−1} does not have a monochromatic
subset of cardinality m (there are only finitely many such subsets, so we can express it).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 31

Now assume for contradiction that for any n, there is a 2-coloring of [n̄]2 such that n̄ has
no monochromatic subsets of cardinality m. Thus the theory T ∶= {ϕn ∶ n ∈ N} is finitely
satisfiable and hence has a model M. Let C ∶= {cMn ∶ n ∈ N}. By Infinite Ramsey theorem, C
has an infinite monochromatic subset A, i.e. either for all distinct a, a′ ∈ A, RM(a, a′) or for
all distinct a, a′ ∈ A, ¬RM(a, a′). Let n be large enough so that A ∩ {ci ∶ i < n} has at least
m elements. Then it is clear that M ⊭ ϕn, a contradiction. �

4.G. Nonaxiomatizable classes

One can use the Compactness theorem to show that many interesting classes of structures
are not axiomatizable.

Proposition 4.18. Let C be a class of τ -structures. If the cardinalities of the structures
in C are bounded, then C is not axiomatizable, unless all structures in C have at most n
elements, for some fixed n ∈ N.

Proof. Follows from the weak upward Löwenheim–Skolem Theorem 4.11. �

Example 4.19. Cyclic groups. By the last proposition, the class of cyclic groups is not
axiomatizable.

Let τ be a signature and x⃗ a vector of d variables.

Notation 4.20. A set S of τ -formulas, we write T (x⃗) to mean that the free variables of each
formula ϕ ∈ T are among x⃗ (so it makes sense to write ϕ(x⃗)). Also, put

● ∃x⃗T (x⃗) ∶= {∃x⃗ϕ(x⃗) ∶ ϕ(x⃗) ∈ T (x⃗)},
● ∀x⃗T (x⃗) ∶= {∀x⃗ϕ(x⃗) ∶ ϕ(x⃗) ∈ T (x⃗)},
● ¬T (x⃗) ∶= {¬ϕ(x⃗) ∶ ϕ(x⃗) ∈ T (x⃗)}.

Lastly, if T (x⃗) is finite, put

● ⋁T (x⃗) ∶= ⋁ϕ∈T ϕ(x⃗),
● ⋀T (x⃗) ∶= ⋀ϕ∈T ϕ(x⃗).

(Unlike the first three definitions, the latter two denote τ -formulas.)

Proposition 4.21. Let C be a class of τ -structures defined as follows: for some τ -theory T ′

and set T (x⃗) of τ -formulas, we have that for every τ -structure A,

A ∈ C ⇐⇒ A ⊧ T ′ and (∀a⃗ ∈ Ad)(∃ϕ ∈ T) A ⊧ ϕ(a⃗). (4.22)

Then C is not axiomatizable, unless for some finite T0 ⊂ T , the theory

T ′ ∪ {∀x⃗(⋁T0(x⃗))}

axiomatizes C.

Proof. Suppose for contradiction that there is an axiomatization S of C. Enhance the signa-
ture by adding a vector c⃗ of d-many new constant symbols and note that the theory

S′ ∶= S ∪ ¬T (c⃗)

is finitely satisfiable; indeed, otherwise, by (c) of Lemma 3.16, for some finite T0 ⊆ T ,
S ⊢ ⋁T0(c⃗), and hence S ⊢ ∀x⃗⋁T0(x⃗) by the Constant Substitution Lemma 3.14 and
Generalization Axiom (13). Since every model of T ′ ∪ {∀(x⃗⋁T0(x⃗))} is in C, it follows

32 ANUSH TSERUNYAN

that T ′ ∪ {∀x⃗(⋁T0(x⃗))} axiomatizes C, contrary to our assumption. Thus, S′ is finitely
satisfiable.

But then the Compactness theorem yields a model M ⊧ S′, which must be in C even
though it violates (4.22), a contradiction. �

Examples 4.23.

(a) Nonbipartite graphs. Let T ∶= {ϕn ∶ n ∈ N odd}, where ϕn expresses that there is a cycle
of length n. Clearly, for a graph Γ ∶= (Γ,E),

Γ is nonbipartite ⇐⇒ Γ ⊧ GRAPHS and (∃n ∈ N) Γ ⊧ ϕn,

and the hypothesis of Proposition 4.21 is met, so this class is not axiomatizable.

(b) Connected graphs. Let T (x, y) ∶= {ϕn(x, y) ∶ n ∈ N}, where ϕn(x, y) expresses that there
is a path between x and y of length at most n. Clearly, for a graph Γ ∶= (Γ,E),

Γ is connected ⇐⇒ Γ ⊧ GRAPHS and (∀u, v ∈ Γ)(∃n ∈ N) Γ ⊧ ϕn(u, v),

and the hypothesis of Proposition 4.21 is met, so this class is not axiomatizable.

Proposition 4.24. Let C be a class of τ -structures defined as follows: for some set T (x⃗) of
τ -formulas, we have that for every τ -structure A,

A ∈ C ⇐⇒ (∃a⃗ ∈ Ad)(∀ϕ ∈ T) A ⊧ ϕ(a⃗). (4.25)

Then, for any τ -sentence χ, if every structure A ∈ C satisfies χ, then there is finite T0 ⊆ T
with ∃x⃗(⋀T0(x⃗)) ⊧ χ. In particular, C is not axiomatizable, unless the theory

{∃x⃗(⋀T0(x⃗)) ∶ finite T0 ⊆ T}

axiomatizes C.

Proof. The last statement follows from the first by applying it to each sentence χ of a
hypothetical axiomatization S of C.

To prove the first statement, let χ as in the hypothesis and enhance the signature by adding
a vector c⃗ of d-many new constant symbols. Note that, by (4.25), the τ -reducts of models of
T (c⃗) are in C, so in particular, they all satisfy χ, and hence T (c⃗) ⊧ χ. By compactness, there
is a finite T0(c⃗) ⊆ T (c⃗) with T0(c⃗) ⊧ χ, so ⊧ (⋀T0(c⃗)) → χ. By the Constant Substitution

Lemma 3.14 and Exists Elimination Axiom (14), we get ⊧ (∃x⃗⋀T0(x⃗)) → χ. �

Example 4.26. Disconnected graphs. Let T (x, y) ∶= {ϕn(x, y) ∶ n ∈ N}, where ϕn(x, y) ex-
presses that there is no path between x and y of length at most n. Clearly, for a graph
Γ ∶= (Γ,E),

Γ is disconnected ⇐⇒ (∃u, v ∈ Γ) (∀ϕ ∈ GRAPHS ∪ T) Γ ⊧ ϕ(u, v),

and the hypothesis of Proposition 4.24 is met, so this class is not axiomatizable.

5. Complete theories

As mentioned above, it is easy to see that every consistent theory has a (consistent)
completion. So why don’t we only consider complete theories and not have to deal with
the issues that come with incomplete theories? For example, why don’t we just work with
Th(N) instead of PA? The problem is that it is hard (in a very precise sense) to check
whether a given statement is an axiom of Th(N) or not. For example, is the Twin Prime

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 33

Conjecture in Th(N)? We wish we knew. The whole point of mathematics is to derive
complicated statements from “easy-to-verify” axioms. We will see in the next section that
“easy-to-verify” means that we can write a computer program that checks whether a given
sentence is an axiom or not. For example, all of the theories in Examples 2.31 satisfy this
criterion.

Now the question is: having defined some reasonable theory, like ACFp, is it complete? In
other words, are these axioms enough to capture the first-order essence of say algebraically
closed fields of characteristic p? In this section we develop a sufficient condition for verifying
completeness, using which we show that ACFp is complete.

5.A. The Loś–Vaught test

Definition 5.1. Let κ be a cardinal. A τ -theory T is called κ-categorical if any two models
of T of cardinality κ are isomorphic. We say that T is uncountably categorical if it is κ-
categorical for some uncountable cardinal κ.

Examples 5.2.

(a) The theory VECQ of vector spaces over Q is uncountably categorical; in fact, it is
κ-categorical, for every uncountable cardinal κ.

Proof. This is by virtue of the fact that every vector space has a basis and to construct
an isomorphism between vector spaces it is enough to find a bijection between their
bases. Details to be added. �

(b) Let DLO be the theory of dense linear orderings without endpoints, i.e. DLO comprises
of the following axioms in the signature τ ∶= (<):

(i) Antireflexivity: ∀x(x ≮ x)
(ii) Antisymmetry8: ∀x∀y(x < y → y ≮ x)

(iii) Transitivity: ∀x∀y∀z[(x < y ∧ y < z) → x < z]

(iv) Linearity: ∀x∀y[(x ≠ y ∧ x ≮ y) → y < x]

(v) Density: ∀x∀y[x < y → ∃z(x < z < y)]
(vi) No endpoints: ∀x∃y∃z(y < x < z)

It is not hard to show that DLO is ℵ0-categorical and hence (Q,<) is the only (up
to isomorphism) countable dense linear ordering without end points. We leave proving
this as an exercise.

(c) For a finite τ -structure A, Th(A) is absolutely categorical, i.e. any two models B,B′ ⊧
Th(A) are isomorphic.

We will see shortly that an argument similar to that for vector spaces shows that ACFp
is κ-categorical as well (for every uncountable cardinal κ).

Proposition 5.3 (Loś–Vaught test). Let T be a τ -theory that does not have finite models.
If T is κ-categorical for some κ ≥ max{∣τ ∣,ℵ0}, then T is complete.

Proof. Let A,B ⊧ T and we need to show that A ≡ B, by Proposition 2.38. Since A and B
are infinite, we can apply the weak version of Löwenheim–Skolem (4.11) and get A′ ⊧ Th(A)

8This is redundant since it follows from antireflexivity and transitivity.

34 ANUSH TSERUNYAN

and B′ ⊧ Th(B) such that ∣A′∣ = κ = ∣B′∣. Because T is κ-categorical, A′ ≅ B′ and hence
A′ ≡ B′. Thus, A ≡ A′ ≡ B′ ≡ B. �

This immediately gives that the theories VECQ and DLO are complete.

One cannot help mentioning the following very important theorem that started the modern
model theory:

Theorem (Morley, 1965). Let T be a theory in a countable signature τ . If T is uncountably
categorical, then it is κ-categorical for every uncountable cardinal κ.

Thus it is not a coincidence that the theory of vector spaces is κ-categorical for all un-
countable cardinals κ. The proof of this theorem is far outside the realm of this course, but
it is worth mentioning that the most important ingredient of it is showing that if a structure
is such that all of its definable sets are either finite or cofinite (complement is finite), then
it admits a “basis” similar to the vector space basis, and so one can use the same argument
as for vector spaces to construct isomorphisms.

Lastly, we would like to mention the following long standing open problem that, although
being model-theoretic in nature, has been best understood (but not completely solved) in
the context of descriptive set theory:

Vaught’s conjecture. Let τ be a countable signature and T be a complete τ -theory having
infinite models. If T has uncountably many nonisomorphic countable models, does it have
continuum many nonisomorphic countable models?

5.B. Algebraically closed fields and the Lefschetz Principle

We now aim at satisfying the conditions of the Loś–Vaught test for ACFp.

Lemma 5.4. Every algebraically closed field is infinite.

Proof. For any finite field F ∶= {a1, ..., an}, the polynomial (x− a1)(x− a2)...(x− an) + 1 does
not have a root in F . Thus F is not algebraically closed. �

The proof of the following is similar to that of the theory of vector spaces being uncountably
categorical, and can be safely omitted by the reader if (s)he does not feel like remembering
field theory.

Proposition 5.5. For p prime or 0, ACFp is κ-categorical for any uncountable cardinal κ.

Proof. Let K1,K2 ⊧ ACFp with ∣K1∣ = ∣K2∣ = κ. For i = 1,2, let Fi be the base field of Ki,
i.e. the substructure of Ki generated by ∅. (If p = 0, then Fi is a copy of Q; otherwise it is
a copy of Z/pZ.) Since F1 and F2 are clearly isomorphic (as rings), we can assume without
loss of generality that F1 = F2 =∶ F . Let Bi be transcendence basis over F 9 in Ki. Now it is

not hard to see that Ki = F (Bi), where F (Bi) denotes the field generated by Bi over F and

F (Bi) denotes its algebraic closure in Ki.
Thus, because F is countable, ∣Ki∣ = ∣Bi∣ ⋅ℵ0. If Bi is countable then so is ∣Bi∣ ⋅ℵ0, but Ki is

uncountable, and hence Bi is uncountable. Then, by basic cardinal arithmetic, ∣Bi∣ ⋅ℵ0 = ∣Bi∣,
so κ = ∣Ki∣ = ∣Bi∣. Hence, there is a bijection f ∶ B1

∼Ð→ B2. This f uniquely extends to an

9A transcendence basis over F is a maximal collection of algebraically independent elements over F .

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 35

isomorphism of F (B1) onto F (B2), which in its turn extends (not necessarily uniquely) to

an isomorphism of K1 = F (B1) onto K2 = F (B2). �

Corollary 5.6. ACFp is complete, for any prime p and for p = 0.

Proof. Follows from the Loś–Vaught test (5.3) and 5.5, 5.4. �

The following was once just a principle (a belief) in algebraic geometry, but it was later
on formalized and turned into a theorem by A. Robinson:

Theorem 5.7 (Lefschetz Principle). Let C ∶= (C,0,1,+,−, ⋅). For a τring-sentence ϕ the
following are equivalent:

(1) C ⊧ ϕ.
(2) K ⊧ ϕ, for some K ⊧ ACF0.
(3) ACF0 ⊧ ϕ.
(4) For sufficiently large primes p, ACFp ⊧ ϕ.
(5) For infinitely many primes p, there is K ⊧ ACFp such that K ⊧ ϕ.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3): Follows from the completeness of ACF0.
(3) Ô⇒ (4): ACF0 ⊧ ϕ implies ACF0 ⊢ ϕ by the Completeness theorem. Hence, because
proofs are finite, there is a finite T ⊆ ACF0 such that T ⊢ ϕ. But then, by the definitions
of ACF0 and ACFp, for sufficiently large prime p, T ⊆ ACFp. Thus ACFp ⊢ ϕ and hence
ACFp ⊧ ϕ.

(4) Ô⇒ (5): Trivial.
(5) Ô⇒ (3): We prove the contrapositive: assume (3) fails. But then ACF0 ⊧ ¬ϕ and

hence, by (3) Ô⇒ (4), for sufficiently large primes p, ACFp ⊧ ¬ϕ. Therefore (5) is false. �

Corollary 5.8 (Ax’s theorem). Let f ∶ Cn → Cn be a polynomial map, i.e. f = (f1, ..., fn),
where each fi(z1, ..., zn) is a polynomial in z1, ..., zn with coefficients in C. If f is injective
then it is surjective.

Proof (Robinson). For fixed n and fixed degree d ∶= maxi {deg(fi)}, the statement is first-
order expressible by a τring-sentence φn,d, and hence, instead of proving it for the field C, by

the Lefschetz principle, it is enough to prove φn,d for the algebraic closure Fp of Fp ∶= Z/pZ,

for all primes p. So, fix a polynomial map f ∶ Fnp → Fnp of degree d.

It is a more or less straightforward exercise in algebra to check that Fp is an increasing
union over k ≥ 1 of the finite fields Fpk of pk elements (unique up to isomorphism). Thus,
letting k0 ≥ 1 be large enough so that all of the coefficients involved in the definition of f are
in Fpk0 , we can write:

Fnp = ⋃
k≥k0

Fnpk .

But then, because Fpk is a field and the definition of f only uses field operations and elements
of Fpk , f(Fn

pk
) ⊆ Fn

pk
, for all k ≥ k0. Because f is injective, the Pigeonhole Principle (yay!)

gives f(Fn
pk
) = Fn

pk
, so

f(Fnp) = f (⋃
k≥k0

Fnpk) = ⋃
k≥k0

f(Fnpk) = ⋃
k≥k0

Fnpk = Fnp .

�

36 ANUSH TSERUNYAN

5.C. Reducts of arithmetic

Definition 5.9. Let T be a τ -theory. A τ -theory T ′ is called an axiomatization for T if for
all τ -sentences,

T ⊢ τ ⇐⇒ T ′ ⊢ ϕ.

PA was constructed as an attempt to “conveniently” axiomatize Th(N), where “conve-
nient” means that there is a computer program recognizing the axioms (we will make this
more in the next section). However, as we will see, Gödel’s Incompleteness theorem states
that PA is incomplete. In fact, there is no convenient axiomatization for Th(N), i.e. any
subtheory T ⊆ Th(N) is either incomplete or inconvenient.

What about reducts of N? Does the theory of (N,0, S) or even of (N,0, S,+) admit a con-
venient axiomatization? In other words, where is the boundary of incompleteness? It turns
out that unlike N, the theories of (N,0, S) and (N,0, S,+) admit convenient axiomatizations,
and this is what we will focus on in this subsection.

We start with NS ∶= (N,0, S). Let τS ∶= (0, S). Here is our first (and last) attempt of
axiomatizing Th(NS). Let theory TS consist of the following axioms:

(S1) Zero has no predecessor: ∀x(S(x) ≠ 0).
(S2) The successor function is one-to-one: ∀x∀y(S(x) = S(y) → x = y).
(S3) Any nonzero number is a successor of something: ∀x(x ≠ 0→ ∃y(x = S(y))).
(S4) For all n ∈ N, there are no n-loops: ∀x(Sn(x) ≠ x), where Sn stands for the n-fold

composition of S.

Note that (S4) is an axiom schema, i.e. it contains an axiom for every n ∈ N; in particular,
TS is infinite.

It is clear that any model M of TS has a standard part N̄ ∶= {∆(n)M ∶ n ∈ N}, where
∆(n) ∶= Sn(0). Define a binary relation ∼ on M as follows: for all a, b ∈M ,

a ∼ b ⇐⇒ if for some n ∈ N, M ⊧ Sn(a) = b or M ⊧ Sn(b) = a.

If a is standard, i.e. a ∈ N̄, then the equivalence class [a] of a is exactly N̄. If a ∈ M is
nonstandard, then [a] does not have a least element (why?) and hence looks like a Z-chain:

...→ ∗ → a→ SM(a) → SM(SM(a)) → ...

Thus M is a union of N̄ and a bunch of Z-chains. Let ΛM denote the set of Z-chains in
M and put λM ∶= ∣ΛM∣. Then ∣M ∣ = ∣N∣ + λM ⋅ ∣Z∣ and hence, by basic cardinal arithmetic,
M has cardinality λM unless λM is finite, i.e. ∣M ∣ = max{λM,ℵ0}. In particular, if M is
uncountable, then ∣M ∣ = λM.

Proposition 5.10. TS is κ-categorical, for any uncountable cardinal κ.

Proof. Let A,B ⊧ TS with ∣A∣ = ∣B∣ = κ. By above, λA = ∣A∣ = κ = ∣B∣ = λB. Thus, there is a
bijection f ∶ ΛA → ΛB. Now the standard parts of A and B are clearly isomorphic. Moreover,
any Z-chain C ∈ ΛA is isomorphic to f(C) because any two Z-chains are clearly isomorphic.
Thus, combining all these individual isomorphisms together, we get an isomorphism of A
onto B. �

From this and the Loś–Vaught test, we get

Corollary 5.11. TS is complete.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 37

Now we turn to N+ ∶= (N,0, S,+). Let τ+ ∶= (0, S,+) and let T+ be the theory consisting of
all of the axioms of PA except for the ones involving multiplication (hence it is a convenient
theory). The proof of the following theorem will be omitted since it uses the technique of
quantifier elimination, which is not covered in these notes.

Theorem 5.12 (Presburger, 1929). T+ is complete.

Thus, as we will see, the incompleteness phenomenon starts with N ∶= (N,0, S,+, ⋅).

6. Incomplete theories

We start with an informal definition, which we will formalize later on.

Definition 6.1 (Informal). A τ -theory T is called recursive if there is a computer program
such that given a τ -sentence ϕ, it returns YES if ϕ ∈ T , and NO otherwise.

We saw in the previous section that the theories of (N,0, S) and (N,0, S,+) admit prim-
itive recursive axiomatizations. However, the situation changes once we add multiplication
because it enables prime numbers and makes it possible to code tuples of natural numbers
into a single number, and we have the following ground-breaking theorem:

Theorem 6.2 (Incompleteness; Gödel, 1931). Any recursive theory T ⊆ Th(N) is incom-
plete. In particular, PA is incomplete.

This section is devoted to the proof of several versions of this theorem and some of its
consequences, as well as making the definition of recursive precise.

6.A. Sketch of proof of the Incompleteness theorem

There are infinitely many proofs of this theorem, but mainly, they split into two groups
depending on what they use: self-reference or diagonalization. We will give rigorous proofs
of each kind later on. However, mainly for historical reasons, in this subsection we sketch
the idea of Gödel’s original proof, which uses self-reference. We will give a more rigorous
version of this proof later, when we develop the basics of recursion theory.

Definition 6.3 (Informal). A function f ∶ Nk → N is called recursive if there is a computer
program such that given a⃗ ∈ Nk as input, it outputs f(a⃗). A set/relation A ⊆ Nk is called
recursive if so is its indicator function.

First thing one shows is that recursive functions are arithmetical. Thus, any function we
can write a computer program for is expressible in the language of arithmetic.

For a finite signature τ , whose symbols are s0, ...sn we enumerate the symbols of FOL(τ)
as follows:

s0 s1 ... sn = ¬ ∧ ∨ → ∀ ∃ , () v0, v1, v2, ...

and call the index of a symbol its code. For example, the code of s0 is 0, the code of = is
n + 1 and the code of vi is n + 11 + i. Using prime numbers and the fact that prime number
factorization is unique, we can code a tuple of natural numbers into a single natural number
(⟨n1, ..., nk⟩ ∶= p

n1+1
1 ⋅ ... ⋅ pnk+1

k), and so we can code formulas since they are just tuples of
symbols of FOL(τ). In fact, we can make sure that the coding and decoding operations are
recursive (think of computer programs that would do this).

38 ANUSH TSERUNYAN

Thus let ⌜t⌝ and ⌜ϕ⌝ denote the codes of a τ -term t and a τ -formula ϕ, respectively. It is
now not hard to see that a τ -theory T is recursive if and only if the set of codes of its axioms
is recursive (as a subset of N).

Now let τ be the signature of arithmetic, i.e. τ ∶= τarthm, and thus we have the above coding
since τarthm is finite. For every n ∈ N, set ∆(n) ≐ Sn(0). It is tedious but straightforward to
show that there is a recursive function Sub0 ∶ N2 → N such that for any τarthm-formula ϕ in
which v0 is not quantified, and for any m ∈ N,

Sub0(⌜ϕ⌝,m) = ⌜ϕ(∆m/v0)⌝.

In words, this function takes m and the code of ϕ, and returns the code of the formula
obtained from ϕ by replacing all occurrences of v0 by the term ∆m.

As mentioned above, all recursive functions are arithmetical. Hence, there is a τarthm-
formula Sub0(x, y, z) such that for all a, b, c ∈ N,

Sub0(a, b) = c ⇐⇒ N ⊧ Sub0(a, b, c).

Without loss of generality, we can assume v0 is not quantified in Sub0(x, y, z).

Lemma 6.4 (Fixed point for N). For each τarthm-formula ϕ(v) there is a τarthm-sentence θ
such that

N ⊧ θ↔ ϕ(⌜θ⌝).

Proof. Put ψ(v0) ≐ ∃z(Sub0(v0, v0, z) ∧ϕ(z)) and m ∶= ⌜ψ(v0)⌝. Now we feed ψ(v0) its own
code by letting θ ≐ ψ(∆m), and thus Sub0(m,m) = ⌜ψ(∆(m))⌝ = ⌜θ⌝. Now magic happens:

N ⊧ θ ⇐⇒ N ⊧ ψ(m)

⇐⇒ N ⊧ ∃z(Sub0(m,m, z) ∧ ϕ(z))

⇐⇒ there exists b ∈ N such that b = sub(m,m) and N ⊧ ϕ(b)

⇐⇒ N ⊧ ϕ(⌜θ⌝).

If you feel cheated, join the club. �

This lemma says that every unary arithmetical relation ϕ(v) asserts of (the code of)
some sentence θ exactly what θ asserts about N. It enables self-reference in the language
of arithmetic, using which we can express the Liar Paradox (i.e. Cantor’s diagonalization
method), which is what lies at the heart of the proof of the Incompleteness theorem.

As an immediate corollary we get the following result that is actually stronger than the
Gödel’s Incompleteness theorem:

Theorem 6.5 (Tarski, 1939). Th(N) is not arithmetical, i.e. the set ⌜Th(N)⌝ ∶= {⌜ϕ⌝ ∶ ϕ ∈ Th(N)}
is not definable in N.

Proof. Left as a homework problem. �

Because formal proofs are just finite sequences of formulas, we can code them using the
operation of coding n-tuples. Given a recursive τarthm-theory T , it is straightforward to check
that the following relation is recursive if such is T : for a, e ∈ N,

ProofT (a, e) ⇐⇒ a is a code of a τarthm-formula ϕ and e is a code of a proof of ϕ from T .

To write a program for this, one has to check the definition of the formal proof, i.e. that
every formula in the finite sequence coded by e is either an axiom of FOL(τarthm), or belongs

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 39

to T (this is where we need T to be recursive), or can be obtained from the previous formulas
in the sequence by applying Modus Ponens.

As before, since all recursive functions are arithmetical, there is a τarthm-formula ProofT (x, y)
such that for all a, b ∈ N,

ProofT (a, b) ⇐⇒ N ⊧ ProofT (a, b).

Given this, we have a τarthm-formula defining the relation of provability in N:

ProvableT (x) ≐ ∃yProofT (x, y),

and hence, for any τ -formula ϕ,

ϕ is provable in T ⇐⇒ N ⊧ ProvableT (⌜ϕ⌝).

Proof of the Incompleteness theorem 6.2. We let T ⊆ Th(N) be recursive and show that it
is incomplete by finding a sentence that N satisfies but T does not prove.

Applying the Fixed Point lemma to

ϕ(v) ≐ ¬ProvableT (v),

we get a τarthm-sentence γT such that

N ⊧ γT ↔ ¬ProvableT (⌜γT ⌝).

The Gödel sentence γT says about itself that it is not provable in T (just like in the Liar
Paradox, the liar says “I am a liar”). Because T ⊆ Th(N), we have

T ⊢ γT Ô⇒ N ⊧ γT

⇐⇒ N ⊧ ¬ProvableT (⌜γT ⌝)

⇐⇒ for all e ∈ N,N ⊧ ¬ProofT (⌜γT ⌝, e)

⇐⇒ for all e ∈ N, e is not a code of a proof of γT

⇐⇒ T ⊬ γT ,

and thus, T ⊬ γT . But this means that N ⊧ ¬ProvableT (⌜γT ⌝), so N ⊧ γT , demonstrating
the incompleteness of T . �

Here is another proof of the Incompleteness theorem that is shorter but nonconstructive:

Another proof of the Incompleteness theorem 6.2. If T was recursive and complete, then the
formula ProvableT (x) would define the set ⌜Th(N)⌝ in N because, by the completeness of
T , for every sentence ϕ, ϕ is provable from T if and only if ⌜ϕ⌝ ∈ ⌜Th(N)⌝. Thus ⌜Th(N)⌝
would be arithmetical, contradicting Tarski’s theorem (6.5). �

6.B. Quine: a program that prints its own code

A more down to earth version of the fixed point lemma is a computer program that prints its
own code, commonly referred to as a quine10. In this subsection, we will write such a program
using informal pseudocode in the hope of obtaining a better (hands-on) understanding of
how the self-reference is implemented via the substitution function.

10This is in the honor of philosopher Willard Van Orman Quine, who studied self-reference and is the
author of the Quine paradox: “Yields falsehood when preceded by its quotation” yields falsehood when
preceded by its quotation.

40 ANUSH TSERUNYAN

To write a quine, we can just mimic the proof of the fixed point lemma above: first write
a program PrintSub(x, c, y) that takes as input strings (i.e. sequences of symbol) x, y and
a symbol (character) c, and prints the result of substitution in x of y for c, i.e. it iterates
through x and every time it encounters the symbol given in c, it replaces with the string
y. Now we take the diagonal of this: PrintDiagSub(x) ∶= PrintSub(x, ‘x’, x). This program
now takes a string x as input and in the content of x replaces every occurrence of the symbol
x with the content (which is a string of symbols) of x. It remains to feed the program
PrintDiagSub(x) its own code: Quine() ∶= PrintDiagSub(“the code of PrintDiagSub(x)”).

We now write this more explicitly using a pseudo-code, whose syntax resembles that of the
programming language C; in our pseudo-code, ≐ is the command that assigns a value to a
variable. We start by writing a program without input that assigns the variable x some string
(e.g. mathx≐is≐xfunx≐) using the command x≐“mathx≐is≐xfunx≐”, and then, it iterates
through the content of x and prints every symbol in it; however, whenever it encounters the
pattern x≐, it, in addition, prints the opening quote symbol “, then the content of x, then
the closing quote symbol ”.
NotYetQuine()

{
x≐“mathx≐is≐xfunx≐”;
for(i≐0; i < length(x); i≐ i + 1)
{

Print(x[i]);
if(i ≥ 1 ∧ x[i − 1] = ‘x’ ∧ x[i − 1] = ‘≐’)
{

Print(‘“’);
Print(x);
Print(‘”’);

}
}

}
This is not quite a quine yet and we leave it as an exercise to determine what this program
actually prints. Now, we’ll get an actual quine by replacing the string mathx≐is≐xfunx≐
with the code above, excluding the substring “mathx≐is≐xfunx≐”.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 41

Quine()
{

x≐ “Quine()
{

x≐ ;
for(i≐0;i < length(x);i≐i + 1)
{
Print(x[i]);
if(i ≥ 1 ∧ x[i − 1] = ‘x’ ∧ x[i − 1] = ‘≐’)
{
Print(‘“’);
Print(x);
Print(‘”’);

}
}

}”
for(i≐0; i < length(x); i≐ i + 1)
{

Print(x[i]);
if(i ≥ 1 ∧ x[i − 1] = ‘x’ ∧ x[i − 1] = ‘≐’)
{

Print(‘“’);
Print(x);
Print(‘”’);

}
}

}
This program will print exactly its own code, character-by-character, up to the spacing/formatting
(which is there only to increase readability).

For the rest of the section, we will be occupied with making the notion of recursive precise
and developing tools for proving a stronger version of Gödel’s Incompleteness theorem that
applies not only to subtheories of Th(N), but also to theories (in an arbitrary finite signature
τ), which have PA “encoded” in them; for example, PA ∪ {¬γPA} and ZFC.

6.C. A quick introduction to recursion theory

In this subsection we give a model (of computation) to capture intuitive notions such as
algorithm, computable functions, etc. It is a general belief, known as the Church-Turing
thesis, that this model captures the mentioned notions pretty well. One evidence of it is
that it is very robust in the sense that all other seemingly different models of computation
that people had defined turned out to be equivalent.

Definition 6.6. For a relation R ⊆ Nk+1, define a partial function fR ∶ Nk ⇀ N by a⃗ ↦
µx(R(a⃗, x)), where µx(R(a⃗, x)) is the smallest x ∈ N for which R(a⃗, x) holds, if such x
exists, and it is undefined, otherwise, in which case we write µx(R(a⃗, x)) =⊥. The partial
function fR is said to be obtain by applying the search operation to R.

42 ANUSH TSERUNYAN

For example, µx(x2 > 7) = 3. This operation is also called minimalization.

Definition 6.7 (Recursive functions). A function f ∶ Nk → N is called recursive (or com-
putable) if it is obtained by inductively applying the following rules:

(R1) ● + ∶ N2 → N and ⋅ ∶ N2 → N are recursive;
● 1≤ ∶ N2 → N is recursive, where 1≤ is the characteristic function of ≤, i.e. 1≤(x, y) =

1 if x ≤ y, and 0, otherwise;
● The projection functions P n

i (x1, ..., xn) = xi are recursive, for all i = 1, ..., n and
n ∈ N;

(R2) Composition: if g ∶ Nm → N and h1, ..., hm ∶ Nk → N are recursive, then so is the
composition function f = g(h1, ..., h2) ∶ Nk → N defined by

f(a⃗) = g(h1(a⃗), ..., hm(a⃗));

(R3) Well-defined search: if g ∶ Nn+1 → N is recursive and for all a⃗ ∈ Nn there is x ∈ N with
g(a⃗, x) = 0, then the function f ∶ Nn → N defined by

f(a⃗) = µx(g(a⃗, x) = 0)

is recursive.

A relation R ⊆ Nn is called recursive if so is its characteristic function 1R ∶ Nn → N.

Although the class of recursive functions is obtained by closing the set of functions in
(R1) under operations (R2) and (R3), it is closed under many other operations. The most
important among those is the operation of primitive recursion, which is often included in
the definition of recursive functions. However, we prefer showing that it is a consequence of
the definition rather than including it in the latter since keeping the definition minimalistic
makes it easier to prove that the class of recursive functions is contained in other classes of
functions (less cases to consider).

The following proposition provides some closure properties of the class of recursive func-
tions together with some examples.

Lemma 6.8.

(a) The relations ≥,= are recursive.
(b) Constant functions Cn

k ∶ Nn → N are recursive, where Cn
k (a⃗) = k, for all a⃗ ∈ Nn.

(c) The successor function S ∶ N→ N is recursive.
(d) If n-ary relations P,Q on Nn are recursive, then so are the following

¬P ∶= Nn ∖ P,P ∧Q ∶= P ∩Q,P ∨Q ∶= P ∪Q.

(e) (Definition by Cases) Let R1, ..., Rk ⊆ Nn be recursive such that for each a⃗ ∈ Nn exactly
one of R1(a⃗), ...,Rk(a⃗) holds, and suppose that g1, ..., gk ∶ Nn → N are recursive. Then
g ∶ Nn → N given by

g(a⃗) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g1(a⃗) if R1(a⃗)
⋮ ⋮
gk(a⃗) if Rk(a⃗)

.

is recursive.

Proof. For (a), let note that 1≥(x, y) = 1≤(P 2
2 (x, y), P

2
1 (x, y)) and 1=(x, y) = 1≤(x, y)⋅1≥(x, y).

We prove (b) by induction on k. For k = 0, observe that cn0(a⃗) = µx(P n+1
n+1 (a⃗, x) = 0).

Assume cnk is recursive and note that

cnk+1(a⃗) = µx(c
n
k(a⃗) < x) = µx(1≥(c

n+1
k (a⃗, x), P n+1

n+1 (a⃗, x)) = 0).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 43

For (c), just note that S(a) = a + c11(a).
For (d), observe that ¬P (a⃗) ⇐⇒ 1P (a⃗) = cn0(a⃗) and 1P∧Q(a⃗) = 1P (a⃗) ⋅ 1Q(a⃗). Thus

¬P and P ∧ Q are recursive if so are P and Q. Recursiveness of the rest of the Boolean
combinations follows from this because they are expressible in terms of ∧ and ¬.

Part (e) is left to the reader. �

Lemma 6.9. Let R ⊆ Nn+1 be recursive such that for all a⃗ ∈ Nn there exists x ∈ N with
(a⃗, x) ∈ R. Then the function f ∶ Nn → N given by

f(a⃗) = µxR(a⃗, x)

is recursive.

Proof. Note that f(a⃗) = µx(1¬R(a⃗, x) = 0). �

Using this we get the following convenient property for verifying recursiveness of functions:

Proposition 6.10 (Graph property). Let f ∶ Nn → N. Then f is recursive if and only if so
is its graph (as a subset of Nn+1).

Proof. let R ⊆ Nn+1 be the graph of f . Then for all a⃗ ∈ Nn and b ∈ N,

R(a⃗, b) ⇐⇒ f(a⃗) = b,

and hence
f(a⃗) = µxR(a⃗, x),

from which the proposition follows immediately. �

Definition 6.11. Let g ∶ Nk → N and h ∶ Nk+2 → N. We say that f ∶ Nk+1 → N is defined by
primitive recursion from g, h if for all a⃗ ∈ Nk and n ∈ N,

f(a⃗,0) = g(a⃗)

f(a⃗, n + 1) = h(a⃗, n, f(a⃗, n))

We aim at showing that the class of recursive functions is closed under this operation. For
that, we first convert the recursive definition into an explicit (iterative) one as follows.

Proposition 6.12 (Dedekind’s analysis of recursion). If f ∶ Nk+1 → N is defined by primitive
recursion from g, h as in 6.11, then for all a⃗ ∈ Nk, n ∈ N and w ∈ N,

f(a⃗, n) = w ⇐⇒ there exists a sequence (w0, ...,wn) such that

w0 = g(a⃗) ∧ (∀i < n)[wi+1 = h(a⃗, i,wi)] ∧wn = w.

Proof. Obvious. �

To be able to express the right hand side of Dedekind’s analysis of recursion, we need to
be able to recursively code and decode tuples of natural numbers of arbitrary length into a
single natural number. We do it using the most basic result in number theory.

Chinese Remainder Theorem 6.13. Let d0, ..., dn be pairwise coprime and put d = d0d1...dn.
Then the natural projection map

h ∶ Z/dZ→ Z/d0Z × ... ×Z/dnZ
defined by

[a]d ↦ ([a]d0 , ..., [a]dn)

44 ANUSH TSERUNYAN

is a well-defined group isomorphism.

Proof. That h is well-defined follows from the fact that every di divides d, and that h is a
homomorphism follows from the fact that the remainder function respects addition. Since
the groups on the left and right of the homomorphism have the same number of elements,
by Pigeon Hole Principle, we only have to show that h is injective. To this end, assume that
h([a]d) = 0. Thus every di divides a and hence d divides a because di are pairwise coprime.
Therefore, [a]d = 0 and hence ker(h) is trivial. �

Lemma 6.14.

(a) If relation R ⊆ Nk+1 is recursive, then so are the relations

P (a⃗, y) ⇐⇒ ∃x<yR(a⃗, x),Q(a⃗, y) ⇐⇒ ∀x<yR(a⃗, x),

for all a⃗ ∈ Nk, y ∈ N.
(b) The function � ∶ N2 → N defined by n �m = max{n −m,0} is recursive.
(c) The remainder function Rem ∶ N2 → N, defined by (a, b) ↦ the remainder of a when

divided by b, is recursive.
(d) The function Pair ∶ N2 → N defined by

(x, y) →
(x + y)(x + y + 1)

2
+ x

is a recursive bijection.
(e) The functions Left,Light ∶ N→ N defined by

Pair(x, y) = z ⇐⇒ Left(z) = x ∧Right(z) = y

are recursive.

Proof. We leave parts (a),(b) and (c) to the reader. For (d), Pair(x, y) = µz(2z � (x+ y)(x+
y + 1) = 0) + x and hence is recursive. It is a bijection because it enumerates pairs (x, y) as
follows:

(0,0)
²
x+y=0

(0,1)(1,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x+y=1

(0,2)(1,1)(2,0)
´¹¹¹¸¹¹¹¶

x+y=2

...

For (e), observe that Left(z) = µx(∃y<z+1Pair(x, y) = z) and similarly for Right. �

Lemma 6.15 (Gödel’s β-function). The function β ∶ N2 → N defined by

β(w, i) = Rem(Left(w),1 + (i + 1)Right(w))

is recursive and has the property that for every sequence (w0, ...,wn), there exists w ∈ N such
that for all i ≤ n,

β(w, i) = wi.

Proof. The fact that β is recursive follows from 6.14, so we prove the second statement. Let
s = max{n,w0,w1, ...,wn}, set b = s! and verify that

d0 = 1 + (0 + 1)b, d1 = 1 + (1 + 1)b, ..., dn = 1 + (n + 1)b

are pairwise coprime as follows: if a prime p divides 1 + (i + 1)b and 1 + (j + 1)b, for i < j,
then it divides their difference (j − i)b = (j − i)s!. Since j − i ≤ n ≤ s, p must divide s! = b,
contradicting p dividing 1 + (i + 1)b.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 45

By the Chinese Remainder Theorem, there is a < d0 ⋅ ... ⋅ dn such that Rem(a, di) = wi.
Thus setting w = Pair(a, b), we get

wi = Rem(a, di) = Rem(Left(w),1 + (i + 1)Right(w)) = β(w, i).

�

Using Gödel’s β-function, we define the following coding/decoding tuples functions, which
are clearly recursive:

● ⟨a0, ..., an−1⟩ ∶= µx(β(x,0) = n ∧ ⋀ni=1 β(x, i) = ai−1). Note that <>= 0 (as a nullary
function).

● lh ∶ N→ N by lh(a) = β(a,0).
● (a)i ∶= β(a, i + 1). Note that (⟨a0, ..., an−1⟩)i = ai.
● InitSeg(a, i) = µx(lh(x) = i∧∀j<i(x)j = (a)j). Thus InitSeg(⟨a0, ..., an⟩, i) = ⟨a0, ...ai−1⟩.
● a ∗ b = µx(lh(x) = lh(a) + lh(b) ∧ ∀i<lh(a))(x)i = (a)i ∧ ∀i<lh(b))(x)lh(a)+i = (b)i. Thus

⟨a0, ...an−1⟩ ∗ ⟨b0, ...bm−1⟩ = ⟨a0, ...an−1, b0, ..., bm−1⟩.

Proposition 6.16. Recursive functions are closed under the operation of primitive recursion,
i.e. if g, h, f are as in Definition 6.11 and g, h are recursive, then so is f .

Proof. We implement Dedekind’s analysis of recursion as follows. Define an auxiliary func-
tion f̃ ∶ Nk+1 → N by

f̃(a⃗, n) = µx(lh(x) = n + 1 ∧ (x)0 = g(a⃗) ∧ ∀i<n(x)i+1 = h(a⃗, i, (x)i)),

and note that f(a⃗, n) = (f̃(a⃗, n))n. Since f̃ is clearly recursive, so is f . �

Primitive recursion enables us to show that any function that admits a recursive definition
is recursive. E.g. n→ 2n is recursive because

{
20 = 1

2n+1 = 2 ⋅ 2n
.

We now define a nice subclass of recursive functions, namely that of primitive recursive
functions, which is still rich enough to contain most of the functions that can be implemented
as computer programs. In fact, most of the recursive functions mentioned so far are actually
primitive recursive.

Definition 6.17. The class of primitive recursive functions is the smallest class containing
the successor function S ∶ N → N, the constant functions Cn

k ∶ Nn → N, k,n ∈ N and the
projection functions P n

i (x1, ..., xn) = xi, i ≤ n,n ∈ N, and is closed under composition and
primitive recursion. A relation R ⊆ Nn is called primitive recursive if so is its characteristic
function 1R ∶ Nn → N.

The reader can verify that the functions in (R1) of the definition of recursive functions are
primitive recursive. It is also easy to check that Lemma 6.8 holds with recursive replaced
by primitive recursive.

The following makes it easy to verify that Lemmas 6.14 and 6.15 also hold with recursive
replaced by primitive recursive.

46 ANUSH TSERUNYAN

Lemma 6.18 (Bounded search). Let R ⊆ Nn+1 be a recursive relation. Then the function
f ∶ Nn+1 → N defined by f(a⃗, y) = µx<yR(a⃗, x) is primitive recursive, where

µx<yR(a⃗, x) = {
µxR(a⃗, x) if ∃x<yR(a⃗, x)
y otherwise

.

Proof. We define f(a⃗, y) by primitive recursion as follows: let f(a⃗,0) = 0 and

f(a⃗, y + 1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f(a⃗, y) if f(a⃗, y) < y
y if f(a⃗, y) = y ∧R(a⃗, y)
y + 1 otherwise

.

�

The proof of 6.15 yields a primitive recursive function B ∶ N → N, defined by B(N) =

∏i<n(1 + (1 + i)N !), such that for every n ∈ N and a⃗ ∈ Nn,

whenever N ≥ max{n, a0, ..., an−1}, there is a < B(N) such that β(a, i) = ai, ∀i < n.

Using this together with 6.18 one can easily show that the coding/decoding functions
⟨a0, ..., an−1⟩, lh(a), (a)i, InitSeg(a, i), a ∗ b are primitive recursive.

The following lemma allows recursive definitions using all previously computed values of
a function as opposed to only the last computed value.

Lemma 6.19 (Complete primitive recursion). For f ∶ Nn+1 → N, let

f̄(a⃗, n) = ⟨f(a⃗,0), ..., f(a⃗, n − 1)⟩.

Then:

(a) f is primitive recursive if and only if f̄ is primitive recursive.
(b) If g ∶ Nk+1 → N is primitive recursive, then so is f ∶ Nk+1 → N defined by f(a⃗, n) =

g(a⃗, f̄(a⃗, n)).

Proof. We prove part (a) and leave (b) to the reader.
⇐: Put f(a⃗, n) = (f̄(a⃗, n + 1))n.
⇒: We define f̄(a⃗, n) by primitive recursion as follows:

{
f̄(a⃗,0) = <>

f̄(a⃗, n + 1) = f̄(a⃗, n) ∗ ⟨f(a⃗, n)⟩
.

�

One may ask if there are any recursive functions that are not primitive recursive. The
answer is YES (of course) and here is why:

Proposition 6.20. There exists a recursive function ϕ ∶ N2 → N such that ϕn ∶= ϕ(n, ⋅)
enumerates all the primitive recursive functions (possibly with repetitions), i.e. for every n,
ϕn is primitive recursive and for every primitive recursive function f , there is n such that
f = ϕn. Moreover, any such function ϕ is not primitive recursive.

Proof. A proof of the existence of such ϕ is outlined in one of the homework problems and
here we show that such ϕ is not primitive recursive by applying Cantor’s diagonalization11

11As van den Dries suggests, perhaps antidiagonalization would be a better name.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 47

method. Assume for contradiction that ϕ is primitive recursive. Then so is the function
ψ(n) = ϕ(n,n) + 1, for all n, and thus there is n0 ∈ N such that ϕn0 = ψ. But then we have

ψ(n0) = ϕn0(n0) = ϕ(n0, n0)

on one hand, and
ψ(n0) = ϕ(n0, n0) + 1

on the other, which is a contradiction. �

Note that the same proof shows that there is no recursive enumeration of recursive func-
tions. Similarly, the set of codes of recursive functions is not recursive, i.e. there is no
recursive binary relation R such that for any unary recursive relation Q there is n such that
for all x,

Q(x) ⇐⇒ R(n,x).

This is known as the undecidability of the halting problem.

Here is a more concrete and important example of a recursive function that is not primitive
recursive:

Definition 6.21. Ackermann function is the function A ∶ N2 → N inductively defined as
follows:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A(0, x) = x + 1
A(n + 1,0) = A(n,1)

A(n + 1, x + 1) = A(n,A(n + 1, x))
.

The proof that this function is recursive but not primitive recursive is left as a home-
work problem together with the proof that the graph of this function is primitive recursive.
The last fact shows that the graph property (Proposition 6.10) does not hold for primitive
recursive functions.

6.D. Representability in a theory

In the sketch of the proof of the Incompleteness theorem above, we used the fact that recursive
functions are arithmetical, i.e. definable in N. Thus the proof only applied to theories that
N satisfies. If we want to prove incompleteness for other theories, like PA∪{¬γPA}, we have
to develop a notion of definability inside a theory rather than a structure. This is what the
following definition is supposed to capture.

Definition 6.22 (Representability). Let T be a τarthm-theory in the signature τarthm of
arithmetic.

● We say that a relation R ⊆ Nn is representable in T if there is a formula ϕ(x⃗) such that
for all a⃗ ∈ Nn,

R(a⃗) Ô⇒ T ⊧ ϕ(∆(a⃗)) and ¬R(a⃗) Ô⇒ T ⊧ ¬ϕ(∆(a⃗)),

where ∆(a⃗) = (∆(a1), ...,∆(an)). Such ϕ is said to represent the relation R in T .
● We say that a function f ∶ Nn → N is representable in T (by a formula) if there is a
formula ϕ(x⃗, y) such that for all a⃗ ∈ Nn,

T ⊧ ∀y[ϕ(∆(a⃗), y) ↔ y = ∆(f(a⃗))].

Such ϕ is said to represent the function f in T .

48 ANUSH TSERUNYAN

● A function f ∶ Nn → N is said to be representable in T by a term if there is a τarthm-term
t(x⃗) such that for all a⃗ ∈ Nn,

T ⊧ t(∆(a⃗)) = ∆(f(a⃗)).

Such t is said to represent f in T .

Proposition 6.23. Let T be a τarthm-theory and f ∶ Nn → N.

(a) If f is representable in T by a term, then it is also representable in T by a formula.
(b) Suppose that for any distinct m,k ∈ N, T ⊧∆(m) ≠ ∆(k). Then, if f is representable

in T , then so is its graph.

Proof. For part (a), letting t(x⃗) be a term representing f , it is straightforward to check
that the formula ϕ(x⃗, y) ≐ t(x⃗) = y represents f . As for (b), we check that any formula
representing f also represents its graph. Indeed, let ϕ(x⃗, y) be a formula representing f in
T and fix arbitrary a⃗ ∈ Nn and b ∈ N. By instantiating y ∶= ∆(b), we get

T ⊧ ϕ(∆(a⃗,∆(b))) ↔∆(b) = ∆(f(a⃗)).

Thus, it is clear that if f(a⃗) = b then T ⊧ ϕ(∆(a⃗),∆(b)), and if f(a⃗) ≠ b then the additional
hypothesis on T guarantees that T ⊧ ¬ϕ(∆(a⃗),∆(b)). �

The following shows that we could have defined representability of relations using that of
functions (not the other way around).

Proposition 6.24. If T is a τarthm-theory such that T ⊧∆(1) ≠ 0 and R ⊆ Nn, then

R is representable in T if and only if 1R is representable in T .

Proof. ⇒: Let ϕ(x⃗) represent R in T and put

ψ(x⃗, y) ≐ [ϕ(x⃗) ∧ y = ∆(1)] ∨ [¬ϕ(x⃗) ∧ y = 0].

We show that ψ(x⃗, y) represents 1R in T . Fix a⃗ ∈ Nn and consider cases as to whether R(a⃗)
holds.

Assume R(a⃗) holds, so T ⊧ ϕ(∆(a⃗)), 1R(a⃗) = 1, and we have to show

T ⊧ ∀y[ψ(∆(a⃗), y) ↔ y = ∆(1)].

Fixing a model M ⊧ T and an arbitrary y ∈M , we see that, since M ⊧ ϕ(∆(a⃗)),

M ⊧ ψ(∆(a⃗), y) ⇐⇒ M ⊧ [ϕ(∆(a⃗)) ∧ y = ∆(1)] ⇐⇒ M ⊧ y = ∆(1).

A similar argument handles the case ¬R(a⃗).
⇐: Let ϕ(x⃗, y) represent 1R and put ψ(x⃗) ≐ ϕ(x⃗,∆(1)). We show that ψ(x⃗) represents R
in T . For every a⃗ ∈ Nn, instantiating y ∶= ∆(1) in the definition of representability, we get

T ⊧ ϕ(∆(a⃗),∆(1)) ↔∆(1) = ∆(1R(a⃗)).

Thus, it is clear that if R(a⃗) holds then T ⊧ ϕ(∆(a⃗),∆(1)), and if R(a⃗) fails then T ⊧
∆(1) ≠ 0 guarantees that T ⊧ ¬ϕ(∆(a⃗),∆(1)). �

Proposition 6.25. All recursive functions and relations are representable in PA.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 49

Proof. By Lemma 6.24, it is enough to show for functions.
Because the standard part of any model of PA is isomorphic to N, the terms t+(x, y) ≐ x+y,

t.(x, y) ≐ x ⋅y and t
(n)
i (x1, ..., xn) = xi represent, respectively, the addition, multiplication and

the projection functions. For the same reason, the formula x ≤ y ≐ ∃z(z + x = y) represents
the relation ≤, and hence 1≤ is representable as well by 6.24. It remains to show that
representability is closed under composition (R2) and safe search R(3) operations.

For (R2), assume that ϕ(x⃗, y) represents the function g ∶ Nk → N and ψi(v⃗, u) represent
the functions hi ∶ Nn → N, where x⃗ is an k-vector and v⃗ is a n-vector. We show that

θ(v⃗, y) ≐ ∃x⃗
k

⋀
i=1

ψi(v⃗, xi) ∧ ϕ(x⃗, y)

represents f = g(h1, ..., hk). Fix a⃗ ∈ Nn and let d = f(a⃗). We have to show that

PA ⊧ ∀y[θ(∆(a⃗), y) ↔ y = ∆(d)].

Let bi = hi(a⃗) and put b⃗ = (b1, ..., bk). Then f(a⃗) = g(b⃗) = d. Therefore,

PA ⊧ ∀y[ϕ(b⃗, y) ↔ y = ∆(d)] and PA ⊧ ∀z[ψi(∆(a⃗), z) ↔ z = ∆(bi)], for i = 1, ..., k.

Thus, arguing in models gives the desired statement.
For (R3), let ϕ(x⃗, y, z) represent the function g ∶ Nn+1 → N, where x⃗ is an n-vector and g

is such that for all a⃗ ∈ Nn there is b ∈ N such that g(a⃗, b) = 0. We show that

ψ(x⃗, z) ≐ ϕ(x⃗, z,0) ∧ ∀u[u < z → ¬ϕ(x⃗, u,0)]

represents f(a⃗) = µx(g(a⃗, x) = 0). Fix a⃗ ∈ Nn and let b = f(a⃗). We have to show that

PA ⊧ ∀z[ψ(∆(a⃗), z) ↔ z = ∆(b)].

By definition, g(a⃗, i) = di ≠ 0 for all i < b, and g(a⃗, b) = 0. Thus,

PA ⊧ ϕ(a⃗,∆(b),0) and PA ⊧ ϕ(a⃗,∆(i),∆(di)), for all i < b.

Because PA ⊧ ∀u[u < ∆(b) → ⋁i<b u = ∆(i)], it follows that PA ⊧ ψ(∆(a⃗),∆(b)). On the

other hand, for any M ⊧ PA and z ∈ M with z ≠ ∆(b), we have that either z < ∆(b), so
z = ∆(i) for some i < b and hence M ⊧ ¬ϕ(∆(a⃗), z,0), or z > ∆(b) and taking u ∶= ∆(b)
witnesses the failure of ∀u[u < z → ¬ϕ(x⃗, u,0)] in M. Hence, for all z ∈ M,

M ⊧ ψ(∆(a⃗), z) ↔ z = ∆(b).

�

In a later subsection, we will also prove the converse of this proposition, so representability
in PA actually characterizes recursive functions.

6.E. Robinson’s system Q

Now we describe a finite subtheory of Th(N), namely Robinson’s12 system Q, which is much
weaker than PA, but still rich enough to represent recursive functions. The advantage of it
over PA is that it is finite, and we will use this later in proving that the empty τarthm-theory

12This is due to Raphael Robinson and not Abraham or Julia Robinsons as I falsely thought.

50 ANUSH TSERUNYAN

is undecidable. However, this subsection can be safely skipped by readers, who are willing
to accept that we can represent all recursive functions in some finite subtheory of Th(N).

Definition 6.26 (Robinson’s system Q). The following are the axioms of Q:

(Q1) ∀x[¬S(x) = 0],
(Q2) ∀x∀y[S(x) = S(y) → x = y],
(Q3) ∀x[x + 0 = x],
(Q4) ∀x∀y[S(x + y) = x + S(y)],
(Q5) ∀x[x ⋅ 0 = 0],
(Q6) ∀x∀y[x ⋅ S(y) = x ⋅ y + x],
(Q7) ∀x(x ≠ 0→ ∃y(x = S(y))).

So the difference between PA and Q is that the induction schema of PA is replaced
by a single axiom stating that every nonzero element has a predecessor (which is clearly
provable in PA). This theory is pretty weak: for example, it does not prove the associativ-
ity/commutativity of the addition/multiplication. However, every model of Q has a standard
part:

Proposition 6.27.

(a) For any model M of Q, there is a unique homomorphism f ∶ N →M. In fact, this f is
a τarthm-embedding and hence we can view N as a substructure of M.

(b) For any quantifier free formula ϕ(x⃗) and a⃗ ∈ Nk,

N ⊧ ϕ(a⃗) ⇐⇒ Q ⊢ ϕ(∆(a⃗)),

where ∆(a⃗) = (∆(a1), ...,∆(ak)).

Proof. Part (b) follows from (a) since for M ⊧ Q, N ⊆ M and hence

N ⊧ ϕ(a⃗) ⇐⇒ M ⊧ ϕ(∆(a⃗)),

because ϕ is quantifier free. Because M was an arbitrary model of Q, we are done by the
Completeness theorem.

As for part (a), the proof is exactly the same as for models of PA. The uniqueness is
clear because we f has to preserve 0 and S and thus f(∆(n)N) = ∆(n)M. This function is
injective because SM is injective and 0M does not have a predecessor. It remains to show
that f preserves + and ⋅. We show that f(n +m) = f(n) + f(m) by induction on m, and
we leave the case of ⋅ to the reader. For m = 0, this follows from axiom (Q3). Now assume
f(n+m) = f(n)+f(m). Then f(n+S(m)) = f(S(n+m)) = S(f(n+m)) = S(f(n)+f(m)) =
f(n) + S(f(m)) = f(n) + f(S(m)), where we used the facts that f respects S and that M
satisfies axiom (Q4). �

Let x ≤ y and x < y abbreviate the formulas ∃z(z + x = y) and x ≠ y ∧ ∃z(z + x = y),
respectively. Keep in mind that z + x may not be equal to x + z in a model of Q. Since the
statement x ≤ y is not quantifier free, it does not follow from the previous lemma that a
model of Q and N have to agree on the ordering of natural numbers (the standard part of
M). However, it turns out to still be true:

Lemma 6.28 (Q preserves the ordering on N). For all n,m ∈ N,

(a) Q ⊢ x ≤ ∆(n) →
n

⋁
i=0

x = ∆(i);

(b) n ≤m ⇐⇒ Q ⊢∆(n) ≤ ∆(m);

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 51

(c) ¬n ≤m ⇐⇒ Q ⊢ ¬∆(n) ≤ ∆(m);
(d) Q ⊢ x ≤ ∆(n) ∨∆(n + 1) ≤ x;
(e) Q ⊢ x ≤ ∆(n) ∨∆(n) < x.

Proof. For part (b), the right-to-left direction follows immediately from (a). As for the other
direction, if n ≤ m, then let k = m − n and thus N ⊧ ∆(k) +∆(n) = ∆(m). By (b) of 6.27,
Q ⊢∆(k) +∆(n) = ∆(m) and thus Q ⊢∆(n) ≤ ∆(m).

For (e), first consider n = 0. Then by (Q3), Q ⊢ 0 ≤ x, so the desired statement follows
from the definition of the formula y < z. Now let n ≠ 0 and hence n = m + 1. By (d),
Q ⊢ x ≤ ∆(m)∨∆(n) ≤ x. Thus, arguing in Q and using (a), either x = ∆(k) for some k < n,
or x = ∆(n), or ∆(n) ≥ x. Hence, again using (a) and the definition of the formula y < z, we
get that either x ≤ ∆(n) or ∆(n) < x.

We leave the proofs of (c) and (d) to the reader, and we prove (a) by induction on n.
Let M ⊧ Q. For n = 0, assume a ∈ M and M ⊧ a ≤ 0. Thus, there is b ∈ M such that
M ⊧ b + a = 0. Now if a ≠ 0M, then a has a predecessor, i.e. for some c ∈ M, M ⊧ a = S(c)
and thus M ⊧ b + S(c) = 0. Arguing inside M, 0 = b + S(c) = S(b + c), which contradicts the
fact that 0 is not a successor. Thus a = 0.

Now assume the statement is true for n and assume M ⊧ a ≤ ∆(n + 1). Hence there is
b ∈M such that b + a = ∆(n + 1) (arguing inside M). Now if a = 0, we are done. Otherwise,
it has a predecessor c ∈ M and thus S(b + c) = b + S(c) = ∆(n + 1). By injectivity of S, we
get b + c = ∆(n) and hence c ≤ ∆(n). By the induction hypothesis, c is equal to one of ∆(i)
for i = 0, ..., n and thus a is equal to one of ∆(j) for j = 1, ..., n + 1. �

Proposition 6.29. All recursive functions and relations are representable in Q.

Proof. The proof is word-by-word the same as for Proposition 6.25 because we have proven
above that the properties of PA used in that proof also hold for Q: namely, the required
properties are (b) of 6.27 and (a,c,d) of 6.28. �

In a later subsection, we will also prove the converse of this proposition, so representability
in Q actually characterizes recursive functions.

6.F. Gödel coding

Here we describe a coding of formulas and proofs, and all functions necessary to prove the
fixed point lemma and the Incompleteness theorem.

For the rest of the section, let τ be a finite signature.

● We code the symbols of FOL(τ) as follows: for s ∈ τ∪{logical symbols}∪{v0, v1, ...}, assign
a number SN(s) as follows: put SN(s) = 2i if s = vi and assign an odd number to each of
the remaining symbols (finitely many) such that different symbols get different numbers.

● For a τ -term t, define its Gödel code ⌜t⌝ as follows

⌜t⌝ = {
⟨SN(s)⟩ if t = s is a variable or a constant symbol
⟨SN(f), ⌜t1⌝, ..., ⌜tn⌝⟩ if f is an n-ary function symbol and t = f(t1, ..., tn)

.

Note that for a variable or a constant symbol s, ⌜s⌝ may not be equal to SN(s).

52 ANUSH TSERUNYAN

● For a τ -formula ϕ, define its Gödel code ⌜ϕ⌝ as follows

⌜ϕ⌝ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨SN(=), ⌜t1⌝, ⌜t2⌝⟩ if ϕ ≐ (t1 = t2)
⟨SN(R), ⌜t1⌝, ..., ⌜tn⌝⟩ if R is an n-ary relation symbol and ϕ ≐ R(t1, ..., tn)
⟨SN(¬), ⌜ψ⌝⟩ if ϕ ≐ ¬ψ
⟨SN(∧), ⌜ψ1⌝, ⌜ψ2⌝⟩ if ϕ ≐ ψ1 ∧ ψ2

⟨SN(∨), ⌜ψ1⌝, ⌜ψ2⌝⟩ if ϕ ≐ ψ1 ∨ ψ2

⟨SN(→), ⌜ψ1⌝, ⌜ψ2⌝⟩ if ϕ ≐ ψ1 → ψ2

⟨SN(∃), ⌜v⌝, ⌜ψ⌝⟩ if ϕ ≐ ∃vψ
⟨SN(∀), ⌜v⌝, ⌜ψ⌝⟩ if ϕ ≐ ∀vψ

.

Lemma 6.30. The following subsets of N are primitive recursive:

(i) Variable ∶= {⌜x⌝ ∶ x is a variable}
(ii) Term ∶= {⌜t⌝ ∶ t is a τ -term}

(iii) Formula ∶= {⌜ϕ⌝ ∶ ϕ is a τ -formula}

Proof. In all proofs we use complete primitive recursion (Lemma 6.19).
(i) a ∈ Variable if and only if lh(a) = 1 and (a)0 is even.
(ii) Term(a) if and only if Variable(a) or a is a code for a constant symbol or (a)0 is a code
for an n-ary functions symbol with n = lh(a) − 1 and ∀i < n,Term((a)i+1).
(iii) is left to the reader. It gets messy if one wants to also check our convention about
quantified variables. �

Lemma 6.31. There is a primitive recursive function Sub ∶ N3 → N such that for any
τ -formula ϕ, variable v and τ -term t that is free for v in ϕ,

Sub(⌜ϕ⌝,SN(v), ⌜t⌝) = ⌜ϕ(t/v)⌝.

Proof. Define Sub(a,m, k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

k if Variable(a) and (a)0 =m
⟨(a)0,Sub((a)1,m, k), ...,Sub((a)lh(a)−1,m, k)⟩ if lh(a) > 0 and (a)0 ≠ SN(∃)
⟨(a)0, (a)1,Sub((a)2,m, k)⟩ if lh(a) > 0 and (a)0 = SN(∃) and (a)1 ≠m
a otherwise

.

This is clearly primitive recursive (using complete recursion). �

Lemma 6.32. The following relations are primitive recursive:

(1) FreeVar ∶= {(⌜ϕ⌝,SN(v)) ∶ v occurs free in ϕ} ⊆ N2

(2) FreeSub ∶= {(⌜ϕ⌝, ⌜t⌝) ∶ t is free for ϕ} ⊆ N3

(3) Sentence ∶= {⌜ϕ⌝ ∶ ϕ is a sentence} ⊆ N
(4) Axiom ∶= {⌜ϕ⌝ ∶ ϕ is an axiom of FOL(τ)} ⊆ N
(5) MP ∶= {(⌜ϕ⌝, ⌜ϕ→ ψ⌝, ψ) ∶ ϕ,ψare τ -formulas} ⊆ N3

where ϕ, t v range over formulas, terms and variables of FOL(τ).

Proof. This is an easy but tedious programming exercise. For example: for all a ∈ N,

Sentence(a) ⇐⇒ Formula(a) and ∀i<a¬FreeVar(a, i).

The readers are invited to check the rest of the relations themselves if they feel like program-
ming. �

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 53

Definition 6.33. For a τ -theory T , define binary relations ProofT ,RefuteT ⊆ N2 by

ProofT ∶= {(⟨⌜ϕ1⌝, ..., ⌜ϕn⌝⟩, ⌜ϕ⌝) ∶ (ϕ1, ..., ϕn) is a proof of ϕ from T} ,

RefuteT ∶= {(⟨⌜ϕ1⌝, ..., ⌜ϕn⌝⟩, ⌜ϕ⌝) ∶ (ϕ1, ..., ϕn) is a proof of ¬ϕ from T} ,

where ϕi and ϕ vary over τ -formulas.

For a τ -theory T , put ⌜T ⌝ ∶= {⌜ϕ⌝ ∶ ϕ ∈ T}. We say that T is recursive (resp. primitive
recursive, arithmetical) if such is ⌜T ⌝.

Lemma 6.34. If a τ -theory T is recursive (resp. primitive recursive, arithmetical), then
such is ProofT .

Proof. This is because for all a ∈ N, ProofT (a, b) if and only if lh(a) > 0 and (a)lh(a)−1 = b and
for every k < lh(a) either (a)k ∈ Axiom or (a)k ∈ ⌜T ⌝ or ∃i<k∃j<kMP((a)i, (a)j, (a)k). �

6.G. The First Incompleteness Theorem (Rosser’s form)

Define a function Sub0 ∶ N2 → N by Sub0(a,n) = Sub(a,SN(v0),∆(n)). It is clear that Sub0

is primitive recursive since such is Sub.
For a τarthm-formula θ, put [θ] ∶= ∆(⌜θ⌝).

Lemma 6.35 (Fixed point for Q). For every τarthm-formula ϕ(v), there is a τarthm-sentence
θ such that

Q ⊧ θ↔ ϕ([θ]).

Proof. Let Sub0(x, y, z) be a τarthm-formula representing Sub0 in Q. We can assume without
loss of generality that the variable v0 does not appear in Sub0 and ϕ. Put

ψ(v0) ≐ ∃z(Sub0(v0, v0, z) ∧ ϕ(z)),

and let m = ⌜ψ⌝. Put θ ≐ ψ(∆(m)). Then Sub0(m,m) = ⌜ψ(∆(m))⌝ = ⌜θ⌝ and hence, by the
definition of representability,

Q ⊧ Sub0(∆(m),∆(m), z) ↔ z = [θ]. (i)

In particular,
Q ⊧ Sub0(∆(m),∆(m), [θ]). (ii)

Therefore, we have

Q ⊧ θ ⇐⇒ Q ⊧ ψ(∆(m))
⇐⇒ Q ⊧ ∃z(Sub0(∆(m),∆(m), z) ∧ ϕ(z))

[Ô⇒ is because of (i)] ⇐⇒ Q ⊧ Sub0(∆(m),∆(m), [θ]) ∧ ϕ([θ])
[⇐Ô is because of (ii)] ⇐⇒ Q ⊧ ϕ([θ]).

�

Now we are ready to prove the Incompleteness theorem for all τarthm-theories T ⊇ Q. How-
ever, we would like to prove a slightly stronger version that applies to theories in signatures
other than τarthm that are rich enough to encode Q in them. We make this precise in the
following definition.

Definition 6.36. Let T1, T2 be theories in finite signatures τ1, τ2, respectively. An interpre-
tation of T1 in T2 is a map π from the set of τ1-sentences to the set of τ2-sentences such
that

54 ANUSH TSERUNYAN

(i) T1 ⊧ θ Ô⇒ T2 ⊧ π(θ),
(ii) T2 ⊧ π(¬θ) ↔ ¬π(θ),

(iii) T2 ⊧ π(ϕ ∧ ψ) ↔ π(ϕ) ∧ π(ψ),
(iv) there is a primitive recursive function π∗ ∶ N→ N such that π∗(⌜θ⌝) = ⌜π(θ)⌝,

where θ,ϕ,ψ range over τ1-sentences, and in the last equality, ⌜ ⌝ denotes the coding function
of FOL(τ1) on the left and of FOL(τ2) on the right.

If there is an interpretation of T1 in T2, we say that T2 interprets T1. For example, ZFC
interprets Q. Also, if T1 ⊆ T2, then by taking the identity function as π∗, we see that T2
interprets T1.

Below let τ be a finite signature.

Lemma 6.37. Let T be a (resp. primitive) recursive τ -theory that interprets Q and let π be
an interpretation of Q in T . Then the following relations are (resp. primitive) recursive:

Proofπ,T (a, b) ⇐⇒ b is an FOL(τarthm)-code of a τarthm-sentence ϕ and
a is an FOL(τ)-code of a proof of π(ϕ) from T ,

Refuteπ,T (a, b) ⇐⇒ b is an FOL(τarthm)-code of a τarthm-sentence ϕ and
a is an FOL(τ)-code of a proof of π(¬ϕ) from T .

Proof. Observe that

Proofπ,T (a, b) ⇐⇒ Sentenceτarthm(b) and ProofT (a, π∗(b)),
Refuteπ,T (a, b) ⇐⇒ Sentenceτarthm(b) and ProofT (a, π∗(⟨SN(¬), b⟩)).

�

First Incompleteness Theorem 6.38 (Rosser’s form). Any consistent recursive τ -theory
that interprets Q is incomplete.

Let us contemplate about the proof a bit before we present it. In the proof of the In-
completeness theorem for T ⊆ Th(N), we constructed a sentence γ that basically expressed
the Liar Paradox: it said about itself that it is not provable. Let us try to use the same
idea here: let π be an interpretation of Q in T and let Proofπ,T (x, y) be a τarthm-formula
representing Proofπ,T in Q. Then by the fixed point lemma for Q, we get a τarthm-sentence
γ such that

Q ⊧ γ ↔ ∀x¬Proofπ,T (x, [γ]). (∗)

It is true that T ⊬ π(γ) since otherwise there will be a code a ∈ N of a proof of π(γ) from
T and hence Q ⊧ Proofπ,T (∆(a), [γ]). But then by (∗), Q ⊧ ¬γ and thus T ⊧ π(¬γ), so
T ⊧ ¬π(γ), contradicting the consistency of T .

However, we don’t get any contradiction if we assume T ⊧ ¬π(γ). Indeed, assuming the
latter, the consistency of T implies that T ⊬ π(γ) and hence there is no natural number
that is a code of a proof of π(γ) from T , i.e. ¬Proofπ,T (a, ⌜γ⌝), for all a ∈ N. Then,
for every a ∈ N, Q ⊧ ¬Proofπ,T (∆(a), [γ]). Unfortunately, this does NOT imply that
Q ⊧ ∀x¬Proofπ,T (x, [γ]) because there may well be a model M of Q with a nonstandard
element w ∈M ∖N such that M ⊧ Proofπ,T (w, [γ]) and there is no contradiction here.

So, the Liar Paradox doesn’t work here and Rosser’s trick is to use the idea of the following
joke13:

13The author has heard this joke from Itay Neeman in the context of searching for an apartment to rent
in LA.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 55

An an economist and his friend stumble upon a $100 bill lying on the street. The friend says
“Hey, look, theres a $100 bill on the sidewalk” and bends over to pick it up, but the economist
stops him, saying “Don’t bother because that’s impossible – if it were really a $100 bill, someone
would have picked it up by now.”

Rosser’s proof of the Incompleteness Theorem 6.38. Let π be an interpretation of Q in T ,
and let Proofπ,T (x, y) and Refuteπ,T (x, y) be τarthm-formulas representing Proofπ,T and
Refuteπ,T in Q. Then by the fixed point lemma for Q, we get a τarthm-sentence ρ such that

Q ⊧ ρ↔ ∀x(Proofπ,T (x, [ρ]) → (∃u < x)Refuteπ,T (u,x)). (1)

The Rosser sentence ρ expresses the unprovability of its translation in T in a round-about
way: it asserts

For every proof of myself, there is a shorter proof of my negation.

We show that neither T ⊢ π(ρ) nor T ⊢ ¬π(ρ).
Case 1: suppose T ⊢ π(ρ). Then there is a code m ∈ N of a proof of π(ρ) from T and hence

Q ⊢ Proofπ,T (∆(m), [ρ]). (2)

Because T is consistent, T ⊬ ¬π(ρ), and hence, by the definition of interpretation, T ⊬ π(¬ρ).
Thus ∀k ∈ N, ¬Refuteπ,T (k, ⌜ρ⌝) and hence Q ⊢ ¬Refuteπ,T (∆(k), [ρ]); in particular, this is
true for all k <m. Therefore, by (a) of Lemma 6.28,

Q ⊢ (∀u < ∆m)¬Refuteπ,T (u, [ρ]). (3)

From (2) and (3), we get

Q ⊢ ∃x(Proofπ,T (x, [ρ]) ∧ (∀u < x)¬Refuteπ,T (u,x)),

which implies Q ⊢ ¬ρ by (1). Therefore, T ⊢ π(¬ρ) and hence T ⊢ ¬πρ, contradicting the
consistency of T .

Case 2: suppose T ⊢ ¬π(ρ). Thus T ⊢ π(¬ρ), so there is a code k ∈ N of a proof of π(¬ρ)
from T . Hence Refuteπ,T (k, ⌜ρ⌝) holds and by representability in Q,

Q ⊢Refuteπ,T (∆(k), [ρ]). (4)

Also, for any n ∈ N, ¬Proofπ,T (n, ⌜ρ⌝) holds by the consistency of T , and thus

Q ⊢ ¬Proofπ,T (∆(n), [ρ]). (5)

We argue in models, so fix M ⊧ Q. By (e) of Lemma 6.28, for every a ∈ M , a ≤ ∆(k) or
∆(k) < a. In the first case, by (a) of Lemma 6.28, we get that a = ∆(n) for some n ≤ k, and
thus M ⊧ ¬Proofπ,T (a, [ρ]), by (5). In the second case, i.e. if ∆(k) < a,

M ⊧ (∃u < a)Refuteπ,T (u, [ρ]),

by (4). Therefore, for all a ∈M ,

M ⊧ Proofπ,T (a, [ρ]) → (∃u < a)Refuteπ,T (u, [ρ]).

Thus

Q ⊢ ∀x(Proofπ,T (x, [ρ]) → (∃u < x)Refuteπ,T (u,x)),

and hence Q ⊢ ρ, by (1). But then T ⊢ π(ρ), contradicting the consistency of T . �

56 ANUSH TSERUNYAN

6.H. The Second Incompleteness Theorem and Löb’s theorem

Let τ be a finite signature and let T be a recursive τ -theory. Recall (see Definition 6.33)
that the relations ProofT ,RefuteT ⊆ N2 are recursive. Let ProofT (x, y) and RefuteT (x, y)
be τarthm-formulas representing them in Q, and put ProvableT (y) ≐ ∃xProofT (x, y). Also
recall that by ⊥ we denote the sentence ∃x(x ≠ x).

Definition 6.39. For T as above, we define a τarthm-sentence that expresses the consistency
of T as follows:

ConT ≐ ¬ProvableT ([⊥]).

Lemma 6.40. Let T be a recursive τ -theory interpreting PA and let π be an interpretation.
Also, let ρT be the Rosser sentence for T as in the proof of 6.38 above. Then PA ⊢ConT →
ρT .

Proof. We claim that Rosser’s proof of the First Incompleteness theorem can be carried out
in PA. It would take too long to actually prove this, but the main point is the following:
Rosser’s proof is completely syntactic, i.e. playing with formal proofs (we only used models
and the Completeness theorem because we were too lazy to do formal proofs, but in principle
we could have constructed all necessary formal proofs). Syntactic arguments such as the
proofs of the fixed point lemma or Deduction theorem can be expressed and carried through
PA because all they use is induction, which PA has.

Thus, in particular PA proves that if T is consistent then T ⊬ π(ρT):

PA ⊢ConT → ∀x¬Proofπ,T (x, [ρT]).

On the other hand, it follows from the definition of ρT that

PA ⊢ ∀x¬Proofπ,T (x, [ρT]) → ρT .

Therefore, PA ⊢ConT → ρT . �

From this we immediately get yet another foundational theorem by Gödel:

Second Incompleteness Theorem 6.41. Let T be a recursive τ -theory interpreting PA
and let π be an interpretation. Then T ⊬ π(ConT), i.e. T cannot prove its own consistency.

Proof. By the previous lemma and the fact that π is an interpretation of PA in T , we get

T ⊢ π(ConT) → π(ρT).

Thus, if T ⊢ π(ConT) then T ⊢ π(ρT), which is a contradiction. �

Lemma 6.42. Let τ be a finite signature and T a recursive τ -theory. For any τ -sentences
ϕ, θ, the following statements are provable in PA:

(a) The Deduction theorem: ProvableT∪{θ}([ϕ]) ↔ ProvableT ([θ → ϕ]).
(b) Proof by contradiction: ProvableT ([¬θ →⊥]) ↔ ProvableT ([θ]).
(c) Lemma about consistency: ConT∪{¬θ}↔ ¬ProvableT (θ).

Proof. For parts (a) and (b), one has to note that the proofs of the corresponding theorems
can be formalized in PA since all they use is syntactic arguments and induction. As for (c),
it follows from (a) and (b) and we leave this as an exercise. �

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 57

Because N is a model of PA, we know that whatever PA proves is true about the natural
numbers, in other words, for every τarthm-sentence θ,

N ⊧ ProvablePA([θ]) → θ.

Does PA know this? That is: does it prove ProvablePA([θ]) → θ for all θ? Here is the
answer:

Theorem 6.43 (Löb, 1955). For every τarthm-sentence θ, PA does not prove ProvablePA([θ]) →
θ unless it proves θ itself, i.e.

PA ⊢ ProvablePA([θ]) → θ ⇐⇒ PA ⊢ θ.

Proof. We prove the left-to-right direction since the other one is trivial. Assume for con-
tradiction that PA ⊢ ProvablePA([θ]) → θ yet PA ⊬ θ. Thus the theory S ∶= PA ∪ {¬θ} is
consistent. By contrapositive, PA ⊢ ¬θ → ¬ProvablePA([θ]) and hence,

S ⊢ ¬ProvablePA([θ]). (∗)

By (c) of Lemma 6.42, we have

PA ⊢ConS ↔ ¬ProvablePA(θ),

thus also
S ⊢ConS ↔ ¬ProvablePA(θ),

so, by Modus Ponens with (∗), we get S ⊢ ConS, contradicting the Second Incompleteness
theorem. �

7. Undecidable theories

Fix a finite signature τ .

Definition 7.1. For a τ -theory T , let Thm(T) denote the set of its theorems, i.e. Thm(T) ∶=
{ϕ ∶ T ⊢ ϕ} ⊆ N, where ϕ ranges over all τ -sentences. If ⌜Thm(T)⌝ is recursive, T is called
decidable.

After various incompleteness results, we are now convinced that sufficiently rich recursive
theories T such as PA or ZFC are incomplete. But maybe we can still write a program
that for a given sentence ϕ decides whether it is a theorem of T or not? More precisely,
is T decidable? (If the answer was yes for example for ZFC, mathematicians would be
unemployed and the world would be an uninteresting place to live in.) This section is
devoted to answering this question.

7.A. Σ0
1 sets and Kleene’s theorem

Below, let Γ be set of subsets of various finite powers of N; e.g., Γ =R, where R is the sets
of all recursive sets, more precisely,

R ∶= {A ⊆ Nk ∶ A recursive, k ∈ N} .

Notation 7.2. For each k ∈ N, put Γ(Nk) ∶= {A ⊆ Nk ∶ A ∈ Γ}, so Γ = ⋃k∈N Γ(Nk). Also, put

¬Γ ∶= {Nk ∖A ∶ A ∈ Γ(Nk), k ∈ N}

∃NΓ ∶= {projk+1(R) ∶ R ∈ Γ(Nk+1), k ∈ N}

∀NΓ ∶= ¬∃N¬Γ.

58 ANUSH TSERUNYAN

Definition 7.3. A set (relation) A ⊆ Nk is called Σ0
1 if for some recursive relation R ⊆ Nk+1,

we have for all a⃗ ∈ Nk,
a⃗ ∈ A ⇐⇒ ∃yR(a⃗, y).

In other words, Σ0
1 sets are exactly the projections of recursive sets. We also denote by Σ0

1

the collection of all Σ0
1 sets, i.e. Σ0

1 ∶= ∃
NR. Finally, put Π0

1 ∶= ¬Σ0
1 and ∆0

1 ∶= Σ0
1 ∩Π0

1.

Note that Π0
1 = ∀

NR, and here are some closure properties of Σ0
1 and Π0

1:

Lemma 7.4. (a) Σ0
1 is closed under finite unions/intersections and projections, i.e. if

P,Q ⊆ Nk, R ⊆ Nk+1 are Σ0
1, then so are

P ∨Q, P ∧Q, ∃zR(⋅, z).

Hence, Π0
1 is closed under finite unions/intersections and co-projections, i.e. if P,Q ⊆

Nk, R ⊆ Nk+1 are Π0
1, then so are

P ∨Q, P ∧Q, ∀zR(⋅, z).

(b) Σ0
1 is closed under recursive preimages, i.e. if f ∶ Nk → N is recursive and A ⊆ N is

Σ0
1, then the relation B = f−1(A) is Σ0

1. Same is true for Π0
1.

Proof. We leave (a) as a homework exercise, and we prove (b). Let R ⊆ N2 be a recursive
relation such that for all n ∈ N, n ∈ A ⇐⇒ ∃mR(n,m). But then the relation Q ⊆ Nk+1

defined by
(a⃗,m) ∈ Q ⇐⇒ R(f(a⃗),m)

is recursive and hence the relation

a⃗ ∈ B ⇐⇒ ∃mQ(a⃗,m)

is Σ0
1. The statement about Π0

1 follows from that about Σ0
1 and the fact that preimages

commute with complements. �

Lemma 7.5. For a τ -theory T , if T is recursive, then ⌜Thm(T)⌝ is Σ0
1.

Proof. If T is recursive, then so is the relation ProofT ⊆ N2 defined in the previous subsection.
But then for all a ∈ N

a ∈ ⌜Thm(T)⌝ ⇐⇒ ∃xProofT (x, a).

�

Let Π0
1 denote the set of complements of Σ0

1 relations, i.e. Π0
1 = {¬R ∶ R ∈ Σ0

1}, and let
∆0

1 ∶= Σ0
1 ∩Π0

1. Also, let Recursive denote the set of recursive relations.

Lemma 7.6 (Kleene’s theorem). ∆0
1 = Recursive.

Proof. ⊇: It is clear that Recursive ⊆ Σ0
1 (why?) and since Recursive is closed under comple-

ments, Recursive ⊆ ∆0
1.

⊆: Let R ⊆ Nk be a ∆0
1 relation. Hence, there are recursive relations P,Q ⊆ Nk+1 such that

∀a⃗ ∈ Nk

a⃗ ∈ R ⇐⇒ ∃xP (a⃗, x), a⃗ ∈ ¬R ⇐⇒ ∃xQ(a⃗, x).

But then the function f ∶ Nk → N defined by f(a⃗) = µx(P ∨Q(a⃗, x)) is recursive and hence
so is R since a⃗ ∈ R ⇐⇒ f(a⃗) ∈ P . �

From this we immediately get the following decidability result:

Proposition 7.7. Every complete recursive τ -theory T is decidable.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 59

Proof. Using the fact that for every τ -sentence ϕ, ϕ ∉ Thm(T) ⇐⇒ ¬ϕ ∈ Thm(T), we get
that for every a ∈ N,

a ∉ ⌜Thm(T)⌝ ⇐⇒ a ∉ Sentenceτ or ⟨SN(¬), a⟩ ∈ ⌜Thm(T)⌝.

By Lemma 7.5, ⌜Thm(T)⌝ is Σ0
1. Because ¬Sentenceτ is recursive (hence Σ0

1) and Σ0
1 is closed

under recursive preimages and finite unions (7.4), the right hand side is Σ0
1 and thus so is the

completement of ⌜Thm(T)⌝. Therefore, ⌜Thm(T)⌝ is ∆0
1 and hence is recursive (by Kleene’s

theorem). �

As a corollary, we get that ACFp, p = 0 or prime, and the theory of vector spaces over a
countable field14 are decidable.

Another corollary of Kleene’s theorem is a strengthening of Proposition 6.10.

Corollary 7.8. For a function f ∶ Nk → N, the following are equivalent:

(1) f is recursive.
(2) Graph(f) ⊆ Nk+1 is recursive.
(3) Graph(f) ⊆ Nk+1 is Σ0

1.

Proof. By Proposition 6.10, it is enough to show (3) ⇒ (2), for which, by Kleene’s theorem,
it is enough to show that if Graph(f) is Σ0

1 then it is also Π0
1. Indeed, for any a⃗ ∈ Nk and

b ∈ N,
(a⃗, b) ∈ Graph(f) ⇔ ∀y ∈ N[(a⃗, y) ∉ Graph(f) ∨ y = b].

It remains to note that because Graph(f) is Σ0
1, the relation (a⃗, y) ∉ Graph(f) is Π0

1, so the
expression on the right defines a Π0

1 relation. �

7.B. Universal Σ0
1 relation and Church’s theorem

For any sets A,B, any relation R ⊆ A×B, and a ∈ A, put R(a) ∶= {b ∈ B ∶ (a, b) ∈ R}. In this
subsection we construct a Σ0

1 relation R ⊆ N2 that is universal for recursive relations, i.e.
any recursive relation P ⊆ N is of the form P = R(a), for some a ∈ N. Using this we prove
that any consistent theory interpreting Q is undecidable. We start by proving the converse
of 6.25.

Proposition 7.9. Let T be a recursive consistent τarthm-theory. Then any relation R ⊆ Nk

representable in T is recursive. In particular, any function f ∶ Nk → N representable in T is
recursive.

Proof. The statement about functions follows from that about relations because if f is rep-
resentable, then such is its graph ((b) of Proposition 6.23), therefore, by the first statement,
the graph is recursive, and hence such is f (Proposition 6.10).

Let R ⊆ Nk be representable in T by a formula ϕ(x⃗). By the definition of representability
and because T is consistent, for all a⃗ ∈ Nk, we have

a⃗ ∈ R ⇐⇒ T ⊢ ϕ(∆(a⃗)) ⇐⇒ ⌜ϕ(∆(a⃗))⌝ ∈ ⌜Thm(T)⌝.

By 7.5, Thm(T) is Σ0
1 and the function s ∶ Nk → N defined by a⃗ → ⌜ϕ(∆(a⃗))⌝ is clearly

primitive recursive. Hence, the right hand side is Σ0
1 by (b) of Lemma 7.4.

14As it is written, 7.7 applies only to finite signatures and if a countable field F is not finite, the signature
τF of the theory of vector spaces over F is infinite. However, we can still assign codes to symbols in τF so
that we can decode all the information about the symbol from its code in a primitive recursive way. Thus
everything proven above applies to τF as well.

60 ANUSH TSERUNYAN

Because the definition of representability is symmetric for R and ¬R, we have that ¬R is
also representable (by ¬ϕ) and hence, by what we have already proven, ¬R is Σ0

1. Therefore,
by Kleene’s theorem, R is recursive. �

This, together with Propositions 6.25 and 6.29, gives the following characterization of
recursive functions.

Corollary 7.10. A function f ∶ Nk → N is recursive if and only if it is representable in PA
if and only if it is representable in Q.

This allows us to construct a relation that enumerates all recursive subsets of N as follows:

Definition 7.11. Recall the primitive recursive function Sub0(a,n) that has the property
that for every τarthm-formula ϕ,

Sub0(⌜ϕ⌝, n) = ⌜ϕ(∆(n)/v0)⌝.

For a τ -theory T that interprets Q by π, define a relation UT ⊆ N2 by

Uπ,T (a,n) ⇐⇒ π∗(Sub0(a,n)) ∈ ⌜Thm(T)⌝.

Proposition 7.12. Let T be a consistent τ -theory interpreting Q by π. Then for each
recursive relation R ⊆ N, there is e ∈ N such that R = Uπ,T (e). Furthermore, if T is recursive,
then Uπ,T is Σ0

1.

Proof. The second statement follows from the definition of Uπ,T and 7.5. For the first state-
ment, let ϕ(v0) be a formula representing R in Q (there is always one with the free variable
being v0), and thus for all n ∈ N,

n ∈ R Ô⇒ Q ⊢ ϕ(∆(n)) Ô⇒ T ⊢ π(ϕ(∆(n)))
n ∉ R Ô⇒ Q ⊢ ¬ϕ(∆(n)) Ô⇒ T ⊢ ¬π(ϕ(∆(n))).

Since T is consistent, we get

n ∈ R ⇐⇒ T ⊢ π(ϕ(∆(n))),

and therefore, letting e = ⌜ϕ(v0)⌝, we have

n ∈ R ⇐⇒ Uπ,T (e, n).

�

If we take T = Q and π = id in the above proposition, then, denoting Uid,Q by UQ, we get
an even stronger result:

Proposition 7.13. The relation UQ is Σ0
1, and for every Σ0

1 relation P ⊆ N, there is e ∈ N
with P = UQ(e). Thus UQ is a universal Σ0

1 relation.

Proof. This is left as a homework problem. �

If T is recursive, we know that Uπ,T is Σ0
1, but is it recursive? The answer is NO, and we

show it by the diagonalization method.

Lemma 7.14 (Cantor). For a set A and a relation R ⊆ A2, let P ⊆ A be denote its antidi-
agonal, i.e. P ∶= {a ∶ ¬R(a, a)}. Then P is not equal to R(a) for any a ∈ A.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 61

Proof. Assume for contradiction that P = R(a), for some a ∈ A. Then we get a contradiction
because

¬R(a, a) ⇐⇒ P (a) ⇐⇒ R(a, a).

�

Corollary 7.15. For every consistent τ -theory T interpreting Q by π, the relation Uπ,T is
not recursive.

Proof. If Uπ,T were recursive, so would be its antidiagonal P and thus, by 7.12, there is a ∈ N
such that P = Uπ,T (a), contradicting 7.14. �

As a corollary, we get the following important result:

Theorem 7.16 (Church, 1936). Any consistent τ -theory T interpreting Q is undecidable.

Proof. Let π be an interpretation of Q in T . If T were decidable, i.e. ⌜Thm(T)⌝ were
recursive, then Uπ,T would be recursive as well, contradicting 7.15. �

In particular, Q and PA are undecidable. Also, ZFC is undecidable unless it is inconsistent.
Church’s theorem also has the following rather surprising consequence based on the fact that
Q is finite:

Corollary 7.17. The empty τarthm-theory is undecidable, i.e. Thmτarthm(∅) is not recursive.

Proof. Let ϕQ be the conjunction of the axioms of Q (here is where we use that Q is finite!).
Then, by the Deduction theorem, for any τarthm-sentence θ,

Q ⊢ θ ⇐⇒ ∅ ⊢ ϕQ → θ.

Thus, letting e = ⌜ϕQ⌝, we get that for all a ∈ N,

a ∈ ⌜Thm(Q)⌝ ⇐⇒ ⟨SN(→), e, a⟩ ∈ ⌜Thmτarthm(∅)⌝.

Hence, ⌜Thmτarthm(∅)⌝ cannot be recursive since otherwise ⌜Thm(Q)⌝ would also be recursive,
contradicting 7.16. �

8. Quantifier elimination

8.A. Definitions and technicalities

Fix a signature τ .

Definition 8.1. We say that a τ -theory T admits quantifier elimination (q.e.), if for every
formula ϕ(x⃗), there is a quantifier-free (q.f.) formula ψ(x⃗) such that

T ⊢ ∀x⃗(ϕ(x⃗) ↔ ψ(x)). (∗)

Assuming that τ is finite, we say that T admits effective quantifier elimination if there is
recursive function h ∶ N → N such that for every formula ϕ(x⃗), h(⌜ϕ(x⃗)⌝) is a code of a q.f.
formula ψ(x⃗) such that (∗) holds. We say that a τ -structure A admits (effective) q.e. if so
does Th(A).

Note that for a τ -theory T to even have a chance to admit q.e., there would have to
exist a quantifier-free sentence. To ensure that such always exists, we enrich FOL(τ) with
propositional symbols for Truth and Falsity. More precisely, just like we always include the
binary relation symbol = in FOL(τ), we include 0-ary relation symbols T and F, together
with the following axioms

62 ANUSH TSERUNYAN

(20) Truth: T↔ ∀x(x = x)
(21) Falsity: F↔ ¬T

Below, we work with this enriched version of FOL(τ).

8.B. Connection with decidability

There is a strong connection between q.e. and decidability. To see this, consider the set
QFThm(T) ∶= {ψ ∶ ψ is a q.f. sentence and T ⊢ ψ}. In many interesting cases, this set (i.e.
the set of the codes) is recursive. For example, for T ∶= Th(R,0,1,+,−, ⋅,<) or T ∶= ACF, a
q.f. sentence is just a Boolean combination of (in)equalities about terms made out of 0,1
using +,−, ⋅, and hence it is (at least intuitively) clear that QFThm(T) is recursive (in fact
primitive recursive); same is true for T ∶= Th(N,0, S,+, ⋅).
Proposition 8.2. Let τ be a finite signature and T a τ -theory such that QFThm(T) is
recursive. If T admits effective q.e. then it is decidable.

Proof. Let h ∶ N→ N be a recursive function as in Definition 8.1, then for every n ∈ N,

n ∈ ⌜Thm(T)⌝ ⇐⇒ h(n) ∈ ⌜QFThm(T)⌝.

Thus, ⌜Thm(T)⌝ is recursive since so is the right hand side. �

It is also important to note15 that the effectiveness of q.e. comes for free if the theory is
decidable; more precisely:

Proposition 8.3. Let τ be a finite signature and T a τ -theory. If T admits q.e. and is
decidable (e.g. when complete), then it actually admits effective q.e.

Proof. Left as an exercise. �

Here are some famous q.e. results.

Theorem 8.4 (Tarski). The structure (R,0,1,+,−, ⋅,<) admits effective quantifier elimina-
tion and hence its theory is decidable.

The above result is also known as the decidability of Euclidean geometry.
For p prime or 0, because ACFp is decidable because it is complete. But here is a stronger

result:

Theorem 8.5 (Robinson, Tarski, possibly others). ACF admits effective quantifier elimi-
nation.

To appreciate this theorem, let X = (xij)ni,j=1 be a matrix of variables and let ϕ(X) be a
τring-formula expressing that X is invertible, i.e. ϕ(X) says that there is a matrix of variables
Y such that when multiplying by X one gets the identity matrix (this is a conjunction of
n2 equations). Clearly ϕ(X) is an existential formula, but we know from linear algebra that
there is a q.f. equivalent to it, namely, the formula expressing that the determinant of X is
nonzero. This is not an entirely trivial fact, is it (think about coming up with the definition
of determinant)? The above theorem implies this for every formula.

Recall the following reduct of N: N+ ∶= (N,0, S,+). In one of the previous sections,
we defined a (resp. primitive recursive) axiomatization T+ for Th(N+) is stated that it is
complete (and hence decidable). The completeness of T+ is a consequence of the following.

15Many thanks to William Balderrama for pointing this out.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 63

Theorem 8.6 (Presburger). T+ admits quantifier elimination.

To conclude the completeness of T+ from this note that any model M of T+ has a standard
part, i.e. N ⊆ M. Hence M and N believe the same q.f. sentences. But every sentence is
equivalent (in T+) to a q.f. sentence, and thus N ≡ M.

For the rest of the section, we will develop a model-theoretic criterion for q.e. using which
we will show that ACF admits q.e. As an application, we will prove Hilbert’s Nullstellensatz.

8.C. Syntactic approach

Lemma 8.7 (Quantifier elimination test). A τ -theory T admits (effective) q.e. if and only
if for every τ -formula of the form ∃yϕ(x⃗, y), where ϕ is q.f., there is a q.f. formula ψ(x⃗)

such that T ⊧ ∀x⃗([∃yϕ(x⃗, y)] ↔ ψ(x⃗)).

Proof. Every formula is logically (i.e. in the empty theory) equivalent to one of the form:

Q1y1Q2y2...Qkykϕ(x⃗, y⃗),

where each Qi is either ∃ or ∀. Because ∀ is the same as ¬∃¬ and negation of a q.f. formula
is still quantifier free, we can replace the quantifiers above with a sequence of ∃ and ¬, and
eliminate the existential quantifiers one-by-one (more formally, by induction on k). �

Proposition 8.8. DLO admits effective q.e.

Proof. By the previous lemma, we have to describe a recursive procedure of getting rid of
the existential quantifier from a formula of the form ∃yϕ(x⃗, y), where ϕ is q.f. Note that ϕ is
a Boolean combination of equalities, inequalities and negations thereof. First note that we
can get rid of negations: in DLO, u ≠ v is equivalent to u < v∨v < u. Also, u ≮ v is equivalent
in DLO to u = v ∨ v < u. Thus, using the distributivity of ∧ over ∨, we may assume that
ϕ is a disjunction of conjunctions of equalities and inequalities. Finally, ∃y distributes over
disjunction and can be omitted from formulas with no other occurrences of y, so we may
assume that ϕ is just a conjunction of equalities and inequalities, i.e. is of the form

(⋀
i∈I

y = xi) ∧ (⋀
j∈J

y < xj) ∧ (⋀
k∈K

xk < y) ,

where I, J,K ⊆ {0,1, ..., ∣x⃗∣ − 1}.

Case I ≠ ∅: To obtain a q.f. equivalent, we fix i ∈ I and simply replace every occurrences
of y with xi.

We now assume that I = ∅.

Case J = ∅ or K = ∅: Say J = ∅. Then, ϕ is equivalent, in DLO, to T because DLO asserts
that there is no maximum element, so a y satisfying ⋀k∈K xk < y would exist in every model
of DLO.

Case J ≠ ∅ and K ≠ ∅: Because our linear ordering is required to be dense, such a y
would exist in every model as long as max{xk ∶ k ∈K} < min{xj ∶ j ∈ J}. Thus, in DLO, ϕ
is equivalent to

⋀
j∈J,k∈K

xk < xj.

�

64 ANUSH TSERUNYAN

8.D. Semantic approach

Let τ be a signature and A be a τ -structure. For B ⊆ A, put τ(B) ∶= τ ∪B, where elements
of B are treated as new constant symbols. We define the natural expansion of A to a
τ(B)-structure A(B) by interpreting symbols in B by themselves, i.e. ∀b ∈ B, bA(B) = b.

Definition 8.9. For a τ -structure A and B ⊆ A, define Diag(A,B) as the set of all quantifier
free τ(B)-sentences that are true in A(B), i.e.

Diag(A,B) ∶= {ψ ∶ ψ is a q.f. τ(B)-sentence and A(B) ⊧ ψ} .

When B = A, we simply write Diag(A) instead of Diag(A,A).

The following definition gives an equivalent (semantic) condition to quantifier elimination.

Definition 8.10. A τ -theory T is called diagram-complete if for any model A of T and any
a⃗ ∈ An (for any n), the τ(a⃗)-theory T ∪Diag(A, a⃗) is complete.

The term was chosen by me since I couldn’t find an already existing name (although the
notion is equivalent to substructure-completeness).

Proposition 8.11. Suppose τ has at least one constant symbol c. Then a τ -theory T admits
q.e. if and only if it is diagram-complete.

Proof. ⇒: Put S ∶= T ∪ Diag(A, a⃗) and let ϕ(x⃗) be a τ -formula with x⃗ = (x1, ..., xn). We
need to show that S proves either ϕ(a⃗) or ¬ϕ(a⃗). By q.e. there is a q.f. formula ψ(x⃗) such
that T ⊢ ϕ(x⃗) ↔ ψ(x). By definition, ψ(a⃗) ∈ Diag(A, a⃗) or ¬ψ(a⃗) ∈ Diag(A, a⃗), and hence
S ⊢ ϕ(a⃗) or S ⊢ ¬ϕ(a⃗).
⇐: Assume the right hand side and let ϕ(x⃗) be a τ -formula with x⃗ = (x1, ..., xn). Take new

constant symbols d⃗ = (d1, ..., dn) and put

Γ(d⃗) ∶= {ψ(d⃗) ∶ ψ is a q.f. τ -formula and T ⊢ ϕ(d⃗) → ψ(d⃗)} .

Claim. T ∪ Γ(d⃗) ⊢ ϕ(d⃗).

Proof of Claim. Suppose for contradiction that T ∪ Γ(d⃗) ⊬ ϕ(d⃗). Then S(d⃗) ∶= T ∪ Γ(d⃗) ∪

{¬ϕ(d⃗)} is consistent, so it has a model A(d⃗), where A is its reduct to a τ -structure; in par-

ticular, Diag(A, d⃗) ⊇ Γ(d⃗). Since A ⊧ T and T is diagram-complete, S′(d⃗) ∶= T ∪Diag(A, d⃗)

is a complete τ(d⃗)-theory, so S′(d⃗) proves every sentence in S(d⃗) because A(d⃗) ⊧ S′(d⃗) and

A(d⃗) ⊧ S(d⃗); in particular, S′(d⃗) ⊢ ¬ϕ(d⃗). Because proofs are finite and Diag(A, d⃗) is closed

under conjunctions, there is ψ(d⃗) ∈ Diag(A, d⃗) such that T ⊢ ψ(d⃗) → ¬ϕ(d⃗) (in case T alone

proves ¬ϕ(d⃗), take ψ(d⃗) ≐ T). Taking the contrapositive, it follows that T ⊢ ϕ(d⃗) → ¬ψ(d⃗),

so ¬ψ(d⃗) ∈ Γ(d⃗) ⊆ Diag(A, d⃗), contradicting the consistency of Diag(A, d⃗). ⊣

Since proofs are finite and Γ(d⃗) is closed under conjunctions, there is ψ ∈ Γ(d⃗) such that

T ⊢ ψ(d⃗) → ϕ(d⃗). T ⊢ ψ(d⃗) → ϕ(d⃗). On the other hand, by virtue of ψ(d⃗) being in

Γ(d⃗), T ⊢ ϕ(d⃗) → ψ(d⃗). Therefore, T ⊢ ψ(d⃗) ↔ ϕ(d⃗), and an application of the Constant
Substitution Lemma 3.14 and Generalization Axiom (13) now finishes the proof. �

Note that in the definition of diagram-completeness, the model A is somewhat irrelevant,
it is only there to make sure that Diag(A, a⃗) is consistent and contains ψ(a⃗) or ¬ψ(a⃗) for
every q.f. formula ψ(x⃗). We make this precise in the lemma below.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 65

Definition 8.12. Let d⃗ be a vector of distinct constant symbols that do not occur in τ . A
set Γ(d⃗) of quantifier free τ(d⃗)-sentences is called a T -diagram if T ∪ Γ(d⃗) is consistent and

for every q.f. τ(d⃗)-sentence ψ, ψ ∈ Γ(d⃗) or ¬ψ ∈ Γ(d⃗).

Lemma 8.13. A τ -theory T is diagram-complete if and only if for any d⃗ (of any length)

and any T -diagram Γ(d⃗), T ∪ Γ(d⃗) is a complete τ(d⃗)-theory.

Proof. ⇐ follows from the Soundness of FOL and ⇒ follows from the Completeness of
FOL. �

8.E. Quantifier elimination for ACF

In this subsection we prove that ACF is diagram-complete. The only method for showing
completeness that we have learnt so far is the Loś–Vaught test, and that is what we will use.

The proof of the following proposition is almost the same as of 5.5.

Proposition 8.14. For every ACF-diagram Γ(d⃗), ACF ∪ Γ(d⃗) is a κ-categorical τring(d⃗)-
theory, for every uncountable cardinal κ.

Proof. Let K1,K2 ⊧ ACF ∪ Γ(d⃗) with ∣K1∣ = ∣K2∣ = κ. Note that K1,K2 have the same

characteristic since it is expressible by a q.f. τring-sentence which must be contained in Γ(d⃗).
Let p be the characteristic (p = 0 or p is prime).

For i = 1,2, let Fi be the base field of Ki, i.e. the substructures of Ki generated by ∅.
(If p = 0, then Fi is a copy of Q; otherwise it is a copy of Z/pZ.) Since F1 and F2 are
clearly isomorphic (as rings), we can assume without loss of generality that F1 = F2 =∶ F .

Let a⃗ = d⃗K1 , b⃗ = d⃗K2 , and denote by F (a⃗), F (b⃗) the fields inside K1,K2, generated by a⃗,b⃗
over F , respectively.

Claim. F (a⃗) and F (b⃗) are isomorphic.

Proof of Claim. Elements of F (a⃗) are of the form p(a⃗)
q(a⃗) , where p, q are polynomials over F and

q(a⃗) ≠ 0. Define h ∶ F (a⃗) → F (b⃗) by p(a⃗)
q(a⃗) ↦

p(b⃗)

q(b⃗)
. This is well-defined because if q(a⃗) ≠ 0, then

q(b⃗) ≠ 0 since a⃗ and b⃗ have the same diagram Γ(d⃗) and q(d⃗) ≠ 0 is a q.f. τring(d⃗)-sentence,

which must be in Γ(d⃗) since a⃗ satisfies it. It is easy to verify that h is a field homomorphism

and hence is injective, and it is surjective because elements of F (b⃗) are of the form p(b⃗)

q(b⃗)
, for

some polynomials p, q over F . ⊣

Without loss of generality, we can identify F (a⃗) and F (b⃗), i.e. assume that L ∶= F (a⃗) =

F (b⃗). Let Bi be transcendence base over L in Ki. (Transcendence base is a maximal
collection of algebraically independent elements over L.) Now it is not hard to see that

Ki = L(Bi), where L(Bi) denotes the field generated by Bi over L and L(Bi) denotes its
algebraic closure in Ki.

Because L is countable, ∣Ki∣ = ∣Bi∣ ⋅ ℵ0 + ∣L∣. If Bi is countable then so is ∣Bi∣ ⋅ ℵ0 + ∣L∣,
but Ki is uncountable, and hence Bi is uncountable. Then, by basic cardinal arithmetic,
∣Bi∣ ⋅ ℵ0 + ∣L∣ = ∣Bi∣ and so κ = ∣Ki∣ = ∣Bi∣. Hence, there is a bijection f ∶ B1 → B2, which
uniquely extends to an isomorphism of L(B1) onto L(B2) by a map similar to the one in the
proof of the claim above. This isomorphism in its turn extends (not necessarily uniquely) to

an isomorphism of K1 = L(B1) onto K2 = L(B2). �

66 ANUSH TSERUNYAN

Corollary 8.15. ACF admits quantifier elimination.

Proof. Follows from 8.13 and 8.11. �

Corollary 8.16. The definable subsets of an algebraically closed field are finite or cofinite.

Proof. Let K be an algebraically closed field. By q.e., every definable set S ⊆ F is defined
by a q.f. formula ϕ(x). For the base case ϕ(x) ≐ (t1(x) = t2(x)), the statement is clear since
ti(x) is a polynomial in x with coefficients in K and the polynomial t1(x) − t2(x) has only
finitely many roots. The step case is also clear since the set of finite and cofinite subsets
of K is closed under finite unions (corresponding to ∧) and complements (corresponding to
¬). �

Remark 8.17. One can also show using a similar argument that the theory of vector spaces
over a countable field admits q.e. and conclude that the definable subsets of a vector space
are only the finite and cofinite ones. In general, structures with only definable subsets being
finite or cofinite are called strongly minimal. It turns out that in those structures one can
always define an abstract model-theoretic operation that generalizes algebraic closure (for
fields) and span (for vector spaces), and this operation allows to define notions of basis
and dimension such that the rest of the structure is “free” over a basis in the sense that
any bijection between bases extends to a (not necessarily unique) isomorphism between the
structures.

8.F. Model-completeness

The following is a very useful notion that is slightly weaker than quantifier elimination.

Definition 8.18. A τ -theory T is called model-complete if A ⊆ B implies A ⪯ B, for all
A,B ⊧ T .

Proposition 8.19. Quantifier elimination implies model-completeness.

Proof. Suppose T admits q.e. and A ⊆ B, where A,B ⊧ T . Because A and B agree on the
q.f. formulas about the elements of A, and every formula is equivalent to a q.f. formula
(in T), A and B agree on all formulas about the elements of A. A τ -structure M is called
model-complete if such is Th(M). �

It can be shown that (R,0,1,+,−, ⋅) is model-complete but it does not admit q.e.
Recalling that we simply write Diag(A) for Diag(A,A), the following proposition justifies

the terminology with regards to diagram-completeness and highlights the difference with
quantifier elimination.

Proposition 8.20. For a τ -theory T , the following are equivalent:

(1) T is model-complete.
(2) For every model A ⊧ T , T ∪Diag(A) is a complete τ(A)-theory.

(3.a) Every τ -formula ϕ(x⃗) is equivalent in T to a universal formula.
(3.b) Every τ -formula ϕ(x⃗) is equivalent in T to an existential formula.

Proof. All implications are easy, except for (2)⇒(3.a). The proof of the latter follows the
same idea as that of Proposition 8.11 and we leave it as a (good) exercise. �

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 67

8.G. Hilbert’s Nullstellensatz

Recall that ACF admits q.e. and hence is model-complete. As a nice application of the
latter fact, we deduce what would be the first theorem in algebraic geometry.

Hilbert’s Nullstellensatz 8.21 (Weak Form). Let F be an algebraically closed field and
I be a proper ideal in the polynomial ring F [t1, ..., tn]. Then the polynomials in I have a
common root in F , i.e. there is a⃗ ∈ F n such that f(a⃗) = 0 for all f(t1, ..., tn) ∈ F [t1, ..., tn].

Proof. Take a maximal ideal M containing I (exists by Zorn’s lemma) and put

K ∶= F [t1, ..., tn]/M.

Since M is maximal, K is a field. Note that now every polynomial in M has a root in K in
the following sense: for f(t1, ..., tn) ∈ M , let f(x1, ..., xn) be the polynomial obtained from
f(t1, ..., tn) by replacing ti with variables xi of FOL(τring). Then, by the definition of K, for

all such f ∈M , f(b⃗) = 0, where b⃗ = (t1 +M, ..., tn +M) ∈ K. (This is why we moved from F
to K: to artificially create a common root).

Let L be an algebraic closure of K. Since K ⊆ L, there is still a common root in L
for all polynomials in M . Now we want to use the model-completeness of ACF to transfer
this statement down to F to obtain a common root in F . However, expressing (in a first-
order way) the statement that all polynomials in M have a common root seems to be a
problem because there are infinitely many polynomials in M (while formulas are finite).
Luckily, Hilbert’s basis theorem says that any ideal in F [t1, ...tn] is finitely generated, so M
is generated by some f1, ..., fm ∈ F [t1, ...tn]. Thus all polynomials in M having a common
root is equivalent to f1, ..., fm having a common root. Put

ϕ(a⃗) ≐ ∃x⃗
m

⋀
i=1

(fi(x⃗) = 0),

where a⃗ ∈ F k is a tuple containing all coefficients of f1, ..., fm. By model-completeness of
ACF, because F ⊆ L and F,L ⊧ ACF, we have F ⪯ L. Hence F ⊧ ϕ(a⃗) because L ⊧ ϕ(a⃗),
and thus f1, ..., fm have a common root in F . �

From this form of the Nullstellensatz, we can derive its strong form using the so-called
Rabinowitsch trick; this does not use any model theory, but we do it here anyway for recre-
ation. First we introduce some notation. For a ring R, let I(R) denote the set of its ideals.
For a field F , a⃗ ∈ F n, and J ∈ I(F [x⃗]), we say that a⃗ annihilates J , and write J(a⃗) = 0,
if for each f ∈ J , f(a⃗) = 0. Put C(J) ∶= {a⃗ ∈ F n ∶ J(a⃗) = 0}. Similarly, for A ⊆ F n, put

I(A) ∶= {f ∈ F [x⃗] ∶ (∀a⃗ ∈ A) f(a⃗) = 0}. Clearly, I(C(J)) ⊇
√
J , where

√
J is the radical of

J , i.e. √
J ∶= {f ∈ F [x⃗] ∶ fm ∈ J for some m ∈ N} .

Hilbert’s Nullstellensatz 8.22 (Strong Form). Let F be an algebraically closed field. For

any J ∈ I(F [x⃗]), I(C(J)) =
√
J .

Proof. Let f ∈ I(C(J)), so every a⃗ ∈ F n that annihilates J , also annihilates f . Let t be a
new indeterminant variable and note that there is no element of Kn+1 that annihilates both
J and 1 − tf . Thus, by the weak form of Hilbert’s Nullstellensatz, the ideal generated by
J ∪ {1 − tf} in F [x⃗, t] must be equal to F [x⃗, t]. Hence, there are some f1, ..., fk ∈ J and
g1(t), ..., gk+1(t) ∈ F [x⃗, t] such that

g1(t)f1 + ... + gk(t)fk + gk+1(t)(1 − tf) = 1.

68 ANUSH TSERUNYAN

Assuming that f ≠ 0 (otherwise, we are done), plug in t = 1/f and get

g1(1/f)f1 + ... + gk(1/f)fk = 1.

Multiplying both sides with fm for large enough m ∈ N, we get

g̃1f1 + ... + g̃kfk = f
m,

where g̃1, ..., g̃k are some polynomials in F [x⃗], which shows that f ∈
√
J . �

References

[End01] H. B. Enderton, A Mathematical Introduction to Logic, 2nd ed., Academic Press, 2001.
[Mar02] D. Marker, Model Theory: An Introduction, Graduate Texts in Mathematics, Springer, 2002.
[Mos08] Y. N. Moschovakis, Informal notes full of errors, unpublished, 2008.
[vdD10] L. van den Dries, Mathematical Logic: Lecture Notes, unpublished, 2010.

Department of Mathematics, University of Illinois at Urbana-Champaign, IL, 61801, USA
E-mail address: anush@illinois.edu

	1. Introduction
	Basic model theory
	Basic recursion theory
	And more

	2. First order logic: the semantic aspect
	2.A. Structures
	2.B. Language and interpretation
	2.C. Definability
	2.D. Theories, models, and axiomatization
	2.E. Semantic versions of implication, consistency, and completeness
	2.F. Elementarity

	3. First order logic: the syntactic aspect
	3.A. The axioms of
	3.B. Formal proofs
	3.C. Syntactic versions of consistency and completeness

	4. Completeness of FOL and its consequences
	4.A. Syntactic-semantic duality, completeness and compactness
	4.B. Henkin's proof of Gödel's Completeness Theorem
	4.C. The Skolem ``paradox''
	4.D. Upward Löwenheim–Skolem theorem
	4.E. Nonstandard models of arithmetic
	4.F. From finite to infinite and back
	4.G. Nonaxiomatizable classes

	5. Complete theories
	5.A. The Łos–Vaught test
	5.B. Algebraically closed fields and the Lefschetz Principle
	5.C. Reducts of arithmetic

	6. Incomplete theories
	6.A. Sketch of proof of the Incompleteness theorem
	6.B. Quine: a program that prints its own code
	6.C. A quick introduction to recursion theory
	6.D. Representability in a theory
	6.E. Robinson's system Q
	6.F. Gödel coding
	6.G. The First Incompleteness Theorem (Rosser's form)
	6.H. The Second Incompleteness Theorem and Löb's theorem

	7. Undecidable theories
	7.A. 01 sets and Kleene's theorem
	7.B. Universal 01 relation and Church's theorem

	8. Quantifier elimination
	8.A. Definitions and technicalities
	8.B. Connection with decidability
	8.C. Syntactic approach
	8.D. Semantic approach
	8.E. Quantifier elimination for ACF
	8.F. Model-completeness
	8.G. Hilbert's Nullstellensatz

	References

