MATH 570: MATHEMATICAL LOGIC

HOMEWORK 9

Due date: Nov 3 (Tue)

1. (a) Show that the Ackermann function grows faster than any primitive recursive function; more precisely, prove that for any primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, there exists $n_{f} \in \mathbb{N}$ such that $f(\vec{x}) \leq A\left(n_{f},\|\vec{x}\|_{1}\right)$ for all $\vec{x} \in \mathbb{N}^{k}$, where $\|\vec{x}\|_{1}=x_{1}+\ldots+x_{n}$.

Hint: Use the problem from the previous homework that had a list of properties of the Ackermann function.
(b) Conclude that the Ackermann function is not primitive recursive.
2. Prove the following proposition using the outline below.

Proposition. There exists a recursive function $\phi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for every $n, \phi_{n}:=\phi(n, \cdot)$ is primitive recursive and for every $k \in \mathbb{N}$ and every primitive recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, there is n such that $\forall \vec{a} \in \mathbb{N}^{k}$,

$$
f(\vec{a})=\phi_{n}(\langle\vec{a}\rangle) .
$$

In the latter case, we say that ϕ_{n} corresponds to f.
In this proposition and below, the tuple coding function \rangle is assumed to satisfy

$$
\left\langle a_{0}, \ldots, a_{k-1}\right\rangle \geq \max \left\{k, a_{0}, \ldots, a_{k-1}\right\}
$$

Outline: Let $\phi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a function with the following property: for every $n \in \mathbb{N}$,

- if $n=\langle 0, a, m\rangle$ then ϕ_{n} corresponds to the successor function $S: \mathbb{N} \rightarrow \mathbb{N}$.
- if $n=\langle 1, a, m\rangle$ then ϕ_{n} corresponds to projection function $P_{m}^{(a)}: \mathbb{N}^{a} \rightarrow \mathbb{N}$.
- if $n=\langle 2, a, m\rangle$ then ϕ_{n} corresponds to constant function $C_{m}^{(a)}: \mathbb{N}^{a} \rightarrow \mathbb{N}$.
- if $n=\langle 3, a, m\rangle$, where
- $m=\left\langle n_{0}, \ldots, n_{k}\right\rangle$ for some $k \geq 1$,
$-\left(n_{0}\right)_{1}=k$,
$-\left(n_{i}\right)_{1}=a$ for $i=1, \ldots, k$,
then, letting $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be the function corresponding to $\phi_{n_{0}}$ and $h_{i}: \mathbb{N}^{a} \rightarrow \mathbb{N}$ the functions corresponding to $\phi_{n_{i}}, \phi_{n}$ corresponds to the function obtained by composition from g and h_{0}, \ldots, h_{k-1}.
- if $n=\langle 4, a, m\rangle$, where
$-a \geq 1$
- $m=\left\langle n_{0}, n_{1}\right\rangle$
$-\left(n_{0}\right)_{1}=a-1$,
$-\left(n_{1}\right)_{1}=a+1$,
then letting $g: \mathbb{N}^{a-1} \rightarrow \mathbb{N}$ be the function corresponding to $\phi_{n_{0}}$ and $h: \mathbb{N}^{a+1} \rightarrow \mathbb{N}$ the function corresponding to $\phi_{n_{1}}, \phi_{n}$ corresponds to the function obtained by primitive recursion from g and h.
Note that to calculate the value $\phi(n, l)$, one needs to know $\phi\left(n^{\prime}, l^{\prime}\right)$ for only finitely many (n^{\prime}, l^{\prime}) with either $n^{\prime}<n$ or $l^{\prime}<l$. Use this and an idea similar to the Dedekind analysis of recursion to show that ϕ is recursive (i.e. one can define a recursive ϕ satisfying the property above).

3. Prove the following:
(a) $\mathrm{Q} \Vdash(x+y)+z=x+(y+z)$;
(b) $\mathrm{Q} \nvdash x+y=y+x$;
(c) $\mathrm{Q} \nvdash \forall x(0+x=x)$.
4. (a) Show that for a theory $T \subseteq T h(\mathbf{N})$, the functions and relations representable in T are arithmetic. Conclude that the recursive functions and relations are arithmetical.
(b) Give a direct proof that the recursive functions/relations are arithmetical.
5. Show that Gödel's Incompleteness theorem (the original form, Theorem 6.2 in the notes) is equivalent to the statement that $\operatorname{Th}(\mathbf{N})$ is not recursive.
