MATH 570: MATHEMATICAL LOGIC

HOMEWORK 9

Due date: Nov 3 (Tue)

1. (a) Show that the Ackermann function grows faster than any primitive recursive function; more precisely, prove that for any primitive recursive function $f : \mathbb{N}^k \to \mathbb{N}$, there exists $n_f \in \mathbb{N}$ such that $f(\vec{x}) \leq A(n_f, \|\vec{x}\|_1)$ for all $\vec{x} \in \mathbb{N}^k$, where $\|\vec{x}\|_1 = x_1 + \ldots + x_n$.

HINT: Use the problem from the previous homework that had a list of properties of the Ackermann function.

- (b) Conclude that the Ackermann function is not primitive recursive.
- 2. Prove the following proposition using the outline below.

Proposition. There exists a recursive function $\phi : \mathbb{N}^2 \to \mathbb{N}$ such that for every $n, \phi_n := \phi(n, \cdot)$ is primitive recursive and for every $k \in \mathbb{N}$ and every primitive recursive function $f : \mathbb{N}^k \to \mathbb{N}$, there is n such that $\forall \vec{a} \in \mathbb{N}^k$,

$$f(\vec{a}) = \phi_n(\langle \vec{a} \rangle).$$

In the latter case, we say that ϕ_n corresponds to f.

In this proposition and below, the tuple coding function $\langle \rangle$ is assumed to satisfy

 $\langle a_0, ..., a_{k-1} \rangle \ge \max \{k, a_0, ..., a_{k-1}\}.$

OUTLINE: Let $\phi : \mathbb{N}^2 \to \mathbb{N}$ be a function with the following property: for every $n \in \mathbb{N}$,

- if $n = \langle 0, a, m \rangle$ then ϕ_n corresponds to the successor function $S : \mathbb{N} \to \mathbb{N}$.
- if $n = \langle 1, a, m \rangle$ then ϕ_n corresponds to projection function $P_m^{(a)} : \mathbb{N}^a \to \mathbb{N}$.
- if $n = \langle 2, a, m \rangle$ then ϕ_n corresponds to constant function $C_m^{(a)} : \mathbb{N}^a \to \mathbb{N}$.

• if
$$n = \langle 3, a, m \rangle$$
, where

 $-m = \langle n_0, ..., n_k \rangle$ for some $k \ge 1$,

$$(n_0)_1 = k$$

$$(n_i)_1 = a \text{ for } i = 1, ..., k,$$

then, letting $g: \mathbb{N}^k \to \mathbb{N}$ be the function corresponding to ϕ_{n_0} and $h_i: \mathbb{N}^a \to \mathbb{N}$ the functions corresponding to ϕ_{n_i} , ϕ_n corresponds to the function obtained by *composition* from g and h_0, \ldots, h_{k-1} .

• if $n = \langle 4, a, m \rangle$, where

$$-a \ge 1$$

$$-m = \langle n_0, n_1 \rangle$$

$$(n_0)_1 = a - 1$$

 $-(n_1)_1 = a + 1,$

then letting $g: \mathbb{N}^{a-1} \to \mathbb{N}$ be the function corresponding to ϕ_{n_0} and $h: \mathbb{N}^{a+1} \to \mathbb{N}$ the function corresponding to ϕ_{n_1} , ϕ_n corresponds to the function obtained by *primitive recursion* from g and h.

Note that to calculate the value $\phi(n, l)$, one needs to know $\phi(n', l')$ for only finitely many (n', l') with either n' < n or l' < l. Use this and an idea similar to the Dedekind analysis of recursion to show that ϕ is recursive (i.e. one can define a recursive ϕ satisfying the property above).

- **3.** Prove the following:
 - (a) $Q \not\vdash (x+y) + z = x + (y+z);$

- (b) $Q \nvDash x + y = y + x;$
- (c) $\mathbf{Q} \not\vdash \forall x (0 + x = x).$
- 4. (a) Show that for a theory $T \subseteq \text{Th}(\mathbf{N})$, the functions and relations representable in T are arithmetic. Conclude that the recursive functions and relations are arithmetical.
 - (b) Give a direct proof that the recursive functions/relations are arithmetical.
- 5. Show that Gödel's Incompleteness theorem (the original form, Theorem 6.2 in the notes) is equivalent to the statement that Th(N) is not recursive.