MATH 570: MATHEMATICAL LOGIC

HOMEWORK 7

Due date: Oct 13 (Tue)

1. Let K be a field and let \overline{K} be an algebraic closure of K. A nonconstant polynomial $f \in K[X_1, ..., X_n]$ is called *irreducible over* K if whenever f = gh for some $g, h \in K[X_1, ..., X_n]$, either deg(g) = 0 or deg(h) = 0. Furthermore, f is called *absolutely irreducible* if it is irreducible over \overline{K} .

For example, the polynomial $X^2 + 1 \in \mathbb{R}[X]$ is irreducible over \mathbb{R} , but it is not absolutely irreducible since $X^2 + 1 = (X + i)(X - i)$ in $\mathbb{C}[X]$. On the other hand, $XY - 1 \in \mathbb{Q}[X, Y]$ is absolutely irreducible.

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and prove the following:

Theorem (Noether-Ostrowski Irreducibility Theorem). For $f \in \mathbb{Z}[X_1, ..., X_n]$ and prime p, let f_p denote the polynomial in $\mathbb{F}_p[X_1, ..., X_n]$ obtained by applying the canonical map $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ to the coefficients of f (i.e. moding out the coefficients by p). For all $f \in \mathbb{Z}[X_1, ..., X_n]$, f is absolutely irreducible (as an element of $\mathbb{Q}[X_1, ..., X_n]$) if and only if for sufficiently large primes p, f_p is absolutely irreducible (as an element of $\mathbb{F}_p[X_1, ..., X_n]$).

HINT: Your proof should be shorter than the statement of the problem. REMARK: The original algebraic proof of this theorem is quite involved!

- **2.** Let $\tau = (E)$, where E is a binary relation symbol.
 - (a) Define a theory T whose models are exactly the τ -structures in which E is an equivalence relation with exactly one equivalence class of size n, for each natural number $n \ge 1$.
 - (b) How many countable models does T have (up to isomorphism)?
 - (c) How many models of cardinality \aleph_1 does T have (up to isomorphism)?
 - (d) Show that the model \mathbf{M}_{ω} of T that is countable and has infinitely many infinite equivalence classes is *elementarily universal* among countable models, i.e. for every other countable model $\mathbf{N} \models T$, $\mathbf{N} \hookrightarrow_{e} \mathbf{M}_{\omega}$.

HINT: Use the proof of upward Löwenheim–Skolem to build an elementary extension of \mathbf{N} with the additional requirement of having infinitely many infinite equivalence classes. Then, wake up, and realize that there is only one (up to isomorphism) such model.

- (e) Is T complete? Prove your answer.
- 3. [Informal¹] Give your best shot at answering the following questions using your knowledge/intuition/experience with programming. Below, let τ be a finite signature.
 - (a) Is there an algorithm/program recognizing the axioms of $\mathbb{FOL}(\tau)$? That is, an algorithm that takes as input a finite $\mathbb{FOL}(\tau)$ -word w and outputs yes if and only if w is an axiom of $\mathbb{FOL}(\tau)$.
 - (b) Is there an algorithm/program recognizing PA? (In the same sense as in part (a).)
 - (c) Let T be a τ -theory that can be recognized by a program. Is there an algorithm/program that recognizes proofs from T? That is, given a finite sequence $(w_i)_{i < n}$ of $\mathbb{FOL}(\tau)$ -words, it outputs yes if and only if $(w_i)_{i < n}$ is a proof from T.

¹You don't have to write this up, but still have to think through and discuss in the problem sessions.

(d) For a τ -theory T, let $\mathsf{Provable}(s)$ denote the unary relation on the $\mathbb{FOL}(\tau)$ -words defined as follows: for an $\mathbb{FOL}(\tau)$ -word w

 $\mathsf{Provable}(w) \iff w \text{ is a } \tau \text{-sentence and } T \vdash w.$

In other words, Provable(w) holds if and only if there exists a proof $(w_i)_{i < n}$ of w from T. Assuming that T can be recognized by a program, do you think it is always possible to write a program implementing this unary relation? If yes, what would it be (roughly)? If no, what is a potential issue?