MATH 570: MATHEMATICAL LOGIC

HOMEWORK 6

Due date: Oct 6 (Tue)

1. Recall Problem 6* from HW2:

Show that the relation

 $P(x,y) \iff x \text{ and } y \text{ are connected}$

is not definable in the undirected graph $\Gamma := (\Gamma, E)$ that consists of two bi-infinite paths \mathbb{Z} .

Now that we have built some nontrivial machinery, try proving this again.

HINT: Let $A, B \subseteq \Gamma$ denote the two bi-infinite paths. Supposing that there is a τ_{graph} -formula $\varphi(x, y)$ defining the connectedness relation in Γ , get an elementary extension of Γ containing two other bi-infinite paths C, D such that φ holds between elements of C and A, but φ doesn't hold between elements of D and A. Get a contradiction by swapping C and D.

2. The following is a well known theorem of additive combinatorics:

Theorem (van der Waerden). Suppose \mathbb{N} is finitely colored. Then one of the color classes contains arbitrarily long arithmetic progressions.

Use this theorem and the Compactness theorem to derive the following finitary version:

Theorem. Given any positive integers m and k, there exists $N \in \mathbb{N}$ such that whenever $\{0, 1, ..., N-1\}$ is colored with m colors, one of the color classes contains an arithmetic progression of length k.

- **3.** (a) Show that the theory of 2-regular acyclic undirected graphs (i.e. every vertex has exactly two neighbors) is uncountably categorical and hence complete.
 - (b) (Anton Bernshteyn) Conclude, once again, that the class \mathcal{D} of disconnected graphs is not axiomatizable.
- 4. Let DLO denote the theory of dense linear orderings without endpoints as defined in Example 5.2(b) of the lecture notes.
 - (a) Show that DLO is \aleph_0 -categorical, and hence ($\mathbb{Q}, <$) is the only (up to isomorphism) countable dense linear ordering without endpoints.

HINT: Enumerate the two models and recursively construct a sequence of finite partial isomorphisms by going back and forth between the models.

(b) Let $\tau_n := (\langle c_1, ..., c_n \rangle)$, where c_i are constant symbols. Show that the theory

$$DLO_n = DLO \cup \{c_i < c_{i+1} : i < n\}$$

is \aleph_0 -categorical. Conclude that DLO_n is complete.

(c) Let $\tau_{\infty} = (\langle i \in \mathbb{N} \rangle)$, where c_i are constant symbols. Show that the theory

 $DLO_{\infty} = DLO \cup \{c_i < c_{i+1} : i \in \mathbb{N}\}$

is complete.

(d) Yet, show that DLO_{∞} has exactly three countable nonisomorphic models and hence is not \aleph_0 -categorical.