MATH 570: MATHEMATICAL LOGIC

HOMEWORK 4

Due date: Sep 22 (Tue)

Below, problems with * are not mandatory. You may use the Completeness and Compactness theorems starting from Problem 4.

- 1. Carefully prove the Constant Substitution lemma.
- 2. Pick two of the following statements and prove them. You may assume the preceding statements in your proofs.
 - (a) (Associativity of +) $\mathsf{PA} \vdash \forall x \forall y \forall z [(x+y) + z = x + (y+z)]$
 - (b) (Difference) $\mathsf{PA} \vdash \forall x \forall y \exists z [\phi(x, y, z) \land \forall u (\phi(x, y, u) \to u = z)]$, where $\phi \equiv x + z = y \lor y + z = x$.
 - (c) (0 is also a left-identity) $\mathsf{PA} \vdash \forall x(0 + x = x)$
 - (d) (Commutativity of +) $\mathsf{PA} \vdash \forall x \forall y (x + y = y + x)$
- **3.** For a fixed signature τ , let \mathcal{T}' denote the set of all (syntactically) consistent fully complete theories and we equip this set with the topology generated by the sets $\langle \phi \rangle \coloneqq \{T \in \mathcal{T}' : T \vdash \phi\}$.
 - (a) Prove that this space is compact Hausdorff. (You shouldn't be using the Compactness theorem or any other big theorem.)
 - (b) Conclude that for $A \subseteq \mathcal{T}'$, if

$$A = \bigcap_{i \in I} \langle \phi_i \rangle = \bigcup_{j \in J} \langle \psi_j \rangle,$$

then there are finite $I_0 \subseteq I, J_0 \subseteq J$ such that

$$A = \bigcap_{i \in I_0} \langle \phi_i \rangle = \bigcup_{j \in J_0} \langle \psi_j \rangle.$$

In particular, the only clopen subsets of \mathcal{T}' are of the form $\langle \phi \rangle$, where ϕ is a τ -sentence.

- 4. Show that if a theory has arbitrarily large finite models, then it has an infinite model.
- 5. (Weak Lefschetz Principle) Let ϕ be a τ_{ring} -sentence. Show that if $\mathsf{ACF}_0 \vDash \phi$, then for large enough primes p, $\mathsf{ACF}_p \vDash \phi$.
- 6. For a τ -theory T, let $\mathcal{M}_{\tau}(T)$ denote the class of its τ -models (i.e. nonempty τ -structures that satisfy it). Call T finitely axiomatizable if $\mathcal{M}_{\tau}(T)$ is finitely axiomatizable, i.e. there is a finite τ -theory S with $\mathcal{M}_{\tau}(S) = \mathcal{M}_{\tau}(T)$.
 - (a) For a τ -theory T, what does finite axiomatizability mean in terms of the topology (as in Problem 3)?
 - (b) Show that for every finitely axiomatizable theory T, there is a finite subset $T_0 \subseteq T$ with $\mathcal{M}_{\tau}(T_0) = \mathcal{M}_{\tau}(T)$.

- 7. A graph $\Gamma = (V, E)$ is called *bipartite* if there is a partition $V = V_1 \oplus V_2$ into disjoint nonempty parts V_1, V_2 , such that there is no edge between the vertices in the same part. Note that this definition is not first-order as it involves quantification over subsets of the underlying set.
 - (a) Nevertheless, show that the class of bipartite graphs is axiomatizable. HINT: Find (google) an equivalent condition that is first-order.
 - (b) However, show that the class of bipartite graphs is not finitely axiomatizable.