MATH 570: MATHEMATICAL LOGIC

HOMEWORK 3

Due date: Sep 15 (Tue)

Below, problems with * are not mandatory.

- 1. (Chasing definitions) A τ -theory T is said to be *semantically complete* if for any τ -sentence $\phi, T \vDash \phi$ or $T \vDash \neg \phi$.
 - (a) Show that any satisfiable τ -theory T has a satisfiable full completion (i.e. a semantically complete τ -theory $\overline{T} \supseteq T$).
 - (b) Show that a τ -theory T is semantically complete if and only if for any $\mathbf{A}, \mathbf{B} \models T, \mathbf{A} \equiv \mathbf{B}$.
- **2.** Let τ be a signature and show that the following are equivalent:
 - (a) For any τ -theory $T, T \vDash \phi$ implies that there is finite $T_0 \subseteq T$ with $T_0 \vDash \phi$.
 - (b) For any τ -theory T, T not satisfiable (semantically inconsistent) implies that some finite $T_0 \subseteq T$ is not satisfiable.
- **3.** For a fixed signature τ , let \mathcal{T} denote the set of all satisfiable fully complete theories and we equip this set with the topology generated by the sets $\langle \phi \rangle \coloneqq \{T \in \mathcal{T} \colon T \vDash \phi\}$.
 - (a) Show that the sets $\langle \phi \rangle$ form an algebra. In particular, they form a basis for this topology, making it zero-dimensional¹ Hausdorff.
 - (b) Prove that the compactness of this space is equivalent to the statements in Problem 2. HINT: Use the equivalent statement to compactness that involves closed sets, namely: A topological space is *compact* if and only if every family of closed sets with the finite intersection property² has a nonempty intersection.
- **4.** Let $\mathbf{A} \subseteq \mathbf{B}$ and assume that for any finite $S \subseteq A$ and $b \in B$, there exists an automorphism f of \mathbf{B} that fixes S pointwise (i.e. f(a) = a for all $a \in S$) and $f(b) \in A$. Show that $\mathbf{A} \prec \mathbf{B}$.
- **5.** Show that $(\mathbb{Q}, <) < (\mathbb{R}, <)$. Conclude that $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$, but $(\mathbb{Q}, <) \neq (\mathbb{R}, <)$.

HINT: Use the previous problem.

6. (Anton Bernshteyn, 2014) Let $\mathbf{B} = (B, E)$ be a countable undirected graph, each of whose vertices have degree at most 1. Suppose further that \mathbf{B} has infinitely many vertices of degree 0 and infinitely many of degree 1. Find a substructure $\mathbf{A} \subseteq \mathbf{B}$ that is isomorphic to \mathbf{B} and yet is not an elementary substructure of \mathbf{B} .

REMARK: Note that $\mathbf{A} \simeq \mathbf{B}$ implies $\mathbf{A} \equiv \mathbf{B}$. Thus, this is an example of a substructure that is elementarily equivalent to the larger structure and yet isn't an elementary substructure.

¹A topology is called *zero-dimensional* if it has a basis consisting of clopen (i.e. both closed and open) sets.

²A family \mathcal{F} of sets is said to have the *finite intersection property* if for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$, $\bigcap_{A \in \mathcal{F}_0} A \neq \emptyset$.

7. Conclude from the Löwenheim-Skolem theorem that any satisfiable theory T has a model of cardinality at most max $\{|\tau|, \aleph_0\}$. In particular, if ZFC is satisfiable, then it has a countable model (although that model **M** would believe it contains sets of uncountable cardinality, e.g. $\mathbb{R}^{\mathbf{M}}$). Explain why this DOES NOT imply that ZFC is not satisfiable.

8.*

- (a) Find a τ_{graph} -sentence φ , all of whose models are 2-colorable undirected graphs with the degree of every vertex being at least 4, and such that φ has infinite models. HINT: Demand existence of two "special" vertices.
- (b) Find a τ_{graph} -sentence φ , all of whose models are infinite undirected graphs. HINT: Demand existence of three "special" vertices, which allow to define a function on the set of vertices. Demand that this function is injective but not surjective.

REMARK: You don't need to know any graph theory to solve this problem.