MATH 570: MATHEMATICAL LOGIC

HOMEWORK 2

Due on Sep 8 (Tue)

Below, problems with * are not mandatory (for fun).

- **1.** (a) A formula is called *universal* (resp. *existential*) if it is of the form $\forall x_1 \forall x_2 ... \forall x_n \psi$ (resp. $\exists x_1 \exists x_2 ... \exists x_n \psi$), where ψ is quantifier free. Let \mathbf{A}, \mathbf{B} be τ -structures with $\mathbf{A} \subseteq \mathbf{B}$ and let $\phi(\vec{v})$ be a τ -formula. Show that for any $\vec{a} \in A^n$,
 - if ϕ is quantifier free, then $\mathbf{A} \models \phi(\vec{a}) \iff \mathbf{B} \models \phi(\vec{a})$;
 - if ϕ is universal, then $\mathbf{B} \models \phi(\vec{a}) \implies \mathbf{A} \models \phi(\vec{a})$;
 - if ϕ is existential, then $\mathbf{A} \models \phi(\vec{a}) \implies \mathbf{B} \models \phi(\vec{a})$.
 - (b) Find a sentence that is true in $(\mathbb{N}, <)$ but false in $(\mathbb{Z}, <)$.
- **2.** Let $\vec{v_1}, ..., \vec{v_n} \in \mathbb{Q}^m$. Show that $\{\vec{v_1}, ..., \vec{v_n}\}$ is linearly independent over \mathbb{Q} if and only if it is linearly independent over \mathbb{R} .

HINT: Show that linear independence can be expressed by both universal and existential formulas.

3. Let ϕ be a τ -sentence. The *finite spectrum* of ϕ is the set

 $\{n \in \mathbb{N}^+ : \text{there is } \mathbf{M} \models \phi \text{ with } |M| = n\},\$

where \mathbb{N}^+ is the set of positive integers.

- (a) Let $\tau = (E)$, where E is a binary relation symbol, and let ϕ be the sentence that asserts that E is an equivalence relation each class of which has exactly 2 elements. Show that the finite spectrum of ϕ is all positive even numbers.
- (b) For each of the following subsets of \mathbb{N}^+ , show that it is the finite spectrum of some sentence ϕ in some signature τ :
 - (i) $\{2^n 3^m : n, m \in \mathbb{N}^+\},\$

HINT: Groups...

(ii) $\{n \in \mathbb{N}^+ : n \text{ is composite}\},\$

HINT: Subgroups and cosets... (Although, there are other ways to do this.)

(iii) $\{p^n : p \text{ is prime and } n \in \mathbb{N}^+\},\$

HINT: Fields...

(iv) $\{n^2 : n \in \mathbb{N}^+\},\$

HINT: One way to do this is using the signature (S, f, g), where S is a unary relation symbol (hence will be interpreted as a subset of the universe), and f, g are unary function symbols.

 $(\mathbf{v})^* \{ p : p \text{ is prime} \}.$

HINT: Fields with an ordering... (Although, there are other ways to do this.)

- **4.** Let **A** be a τ -structure and $P \subseteq A$. Show that any automorphism $h : \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ that fixes P pointwise (i.e. for every $p \in P$, h(p) = p) must fix every P-definable set $D \subseteq A^n$ setwise (i.e. h(D) = D, where, as usual, $h(\vec{d}) = (h(d_1), ..., h(d_n))$ for $\vec{d} \in D$).
- 5. Determine whether the following are 0-definable:
 - (a) The set \mathbb{N} in $(\mathbb{Z}, +, \cdot)$.

HINT: You need a nontrivial fact from elementary number theory.

- (b) The set of non-negative numbers in $(\mathbb{Q}, +, \cdot)$.
- (c) The set of non-negative numbers in $(\mathbb{Q}, +)$.
- (d) The set of positive numbers in $(\mathbb{R}, <)$.
- (e) The function $\max(x, y)$ in $(\mathbb{R}, <)$.
- (f) The function mean $(x, y) = \frac{x+y}{2}$ in $(\mathbb{R}, <)$.
- (g) 2 in $(\mathbb{R}, +, \cdot)$.
- (h) The relation d(x, y) = 2 in an undirected graph (with no loops) (Γ, E) , where d(x, y) denotes the edge distance function.

HINT: Use the previous problem to prove the negative answers.

6^{*}. Show that the relation

$$P(x,y) \iff x \text{ and } y \text{ are connected}$$

is not 0-definable in the undirected graph $\Gamma := (\Gamma, E)$ that consists of two bi-infinite paths, i.e. two disjoint copies of \mathbb{Z} .

HINT: Here is a solution suggested by Anton Bernshteyn. Show that for any τ_{graph} -formula $\phi(\vec{x}, \vec{y})$ with $\vec{x} = (x_1, ..., x_n)$ and $\vec{y} = (y_1, ..., y_k)$, there is a τ_{graph} -formula $\psi(\vec{x}, \vec{y})$ that is a Boolean combination of formulas that depend either only on \vec{x} or only on \vec{y} (i.e. are either of the form $\theta(\vec{x})$ or $\theta(\vec{y})$) such that for some $D \ge 1$, for all $\vec{a} \in \Gamma^n, \vec{b} \in \Gamma^k$ with $d_e(\vec{a}, \vec{b}) \ge D$,

$$\boldsymbol{\Gamma} \vDash \phi(\vec{a}, \vec{b}) \Leftrightarrow \boldsymbol{\Gamma} \vDash \psi(\vec{a}, \vec{b}).$$

When handling the case of the quantifier \exists , use the disjunctive normal form (google it, if you haven't seen it) to distribute the \exists through Boolean combinations.