MATH 570: MATHEMATICAL LOGIC

HOMEWORK 2
Due on Sep 8 (Tue)

Below, problems with * are not mandatory (for fun).

1. (a) A formula is called universal (resp. existential) if it is of the form $\forall x_{1} \forall x_{2} \ldots \forall x_{n} \psi$ (resp. $\exists x_{1} \exists x_{2} \ldots \exists x_{n} \psi$), where ψ is quantifier free. Let \mathbf{A}, \mathbf{B} be τ-structures with $\mathbf{A} \subseteq \mathbf{B}$ and let $\phi(\vec{v})$ be a τ-formula. Show that for any $\vec{a} \in A^{n}$,

- if ϕ is quantifier free, then $\mathbf{A} \vDash \phi(\vec{a}) \Longleftrightarrow \mathbf{B} \vDash \phi(\vec{a})$;
- if ϕ is universal, then $\mathbf{B} \vDash \phi(\vec{a}) \Longrightarrow \mathbf{A} \vDash \phi(\vec{a})$;
- if ϕ is existential, then $\mathbf{A} \vDash \phi(\vec{a}) \Longrightarrow \mathbf{B} \vDash \phi(\vec{a})$.
(b) Find a sentence that is true in $(\mathbb{N},<)$ but false in $(\mathbb{Z},<)$.

2. Let $\vec{v}_{1}, \ldots, \overrightarrow{v_{n}} \in \mathbb{Q}^{m}$. Show that $\left\{\vec{v}_{1}, \ldots, \overrightarrow{v_{n}}\right\}$ is linearly independent over \mathbb{Q} if and only if it is linearly independent over \mathbb{R}.
Hint: Show that linear independence can be expressed by both universal and existential formulas.
3. Let ϕ be a τ-sentence. The finite spectrum of ϕ is the set

$$
\left\{n \in \mathbb{N}^{+}: \text {there is } \mathbf{M} \vDash \phi \text { with }|M|=n\right\}
$$

where \mathbb{N}^{+}is the set of positive integers.
(a) Let $\tau=(E)$, where E is a binary relation symbol, and let ϕ be the sentence that asserts that E is an equivalence relation each class of which has exactly 2 elements. Show that the finite spectrum of ϕ is all positive even numbers.
(b) For each of the following subsets of \mathbb{N}^{+}, show that it is the finite spectrum of some sentence ϕ in some signature τ :
(i) $\left\{2^{n} 3^{m}: n, m \in \mathbb{N}^{+}\right\}$,

Hint: Groups...
(ii) $\left\{n \in \mathbb{N}^{+}: n\right.$ is composite $\}$,

Hint: Subgroups and cosets... (Although, there are other ways to do this.)
(iii) $\left\{p^{n}: p\right.$ is prime and $\left.n \in \mathbb{N}^{+}\right\}$,

Hint: Fields...
(iv) $\left\{n^{2}: n \in \mathbb{N}^{+}\right\}$,

Hint: One way to do this is using the signature (S, f, g), where S is a unary relation symbol (hence will be interpreted as a subset of the universe), and f, g are unary function symbols.
$(\mathrm{v})^{*}\{p: p$ is prime $\}$.
Hint: Fields with an ordering... (Although, there are other ways to do this.)
4. Let \mathbf{A} be a τ-structure and $P \subseteq A$. Show that any automorphism $h: \mathbf{A} \xrightarrow{\sim} \mathbf{A}$ that fixes P pointwise (i.e. for every $p \in P, h(p)=p$) must fix every P-definable set $D \subseteq A^{n}$ setwise (i.e. $h(D)=D$, where, as usual, $h(\vec{d})=\left(h\left(d_{1}\right), \ldots, h\left(d_{n}\right)\right)$ for $\left.\vec{d} \in D\right)$.
5. Determine whether the following are 0-definable:
(a) The set \mathbb{N} in $(\mathbb{Z},+, \cdot)$.

Hint: You need a nontrivial fact from elementary number theory.
(b) The set of non-negative numbers in $(\mathbb{Q},+, \cdot)$.
(c) The set of non-negative numbers in $(\mathbb{Q},+)$.
(d) The set of positive numbers in $(\mathbb{R},<)$.
(e) The function $\max (x, y)$ in $(\mathbb{R},<)$.
(f) The function mean $(x, y)=\frac{x+y}{2}$ in $(\mathbb{R},<)$.
(g) 2 in $(\mathbb{R},+, \cdot)$.
(h) The relation $d(x, y)=2$ in an undirected graph (with no loops) (Γ, E), where $d(x, y)$ denotes the edge distance function.
Hint: Use the previous problem to prove the negative answers.
6*. Show that the relation

$$
P(x, y) \Longleftrightarrow x \text { and } y \text { are connected }
$$

is not 0-definable in the undirected graph $\Gamma:=(\Gamma, E)$ that consists of two bi-infinite paths, i.e. two disjoint copies of \mathbb{Z}.

Hint: Here is a solution suggested by Anton Bernshteyn. Show that for any $\tau_{\mathrm{graph}}-$ formula $\phi(\vec{x}, \vec{y})$ with $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\vec{y}=\left(y_{1}, \ldots, y_{k}\right)$, there is a $\tau_{\text {graph }}$-formula $\psi(\vec{x}, \vec{y})$ that is a Boolean combination of formulas that depend either only on \vec{x} or only on \vec{y} (i.e. are either of the form $\theta(\vec{x})$ or $\theta(\vec{y}))$ such that for some $D \geq 1$, for all $\vec{a} \in \Gamma^{n}, \vec{b} \in \Gamma^{k}$ with $d_{e}(\vec{a}, \vec{b}) \geq D$,

$$
\boldsymbol{\Gamma} \vDash \phi(\vec{a}, \vec{b}) \Leftrightarrow \boldsymbol{\Gamma} \vDash \psi(\vec{a}, \vec{b}) .
$$

When handling the case of the quantifier \exists, use the disjunctive normal form (google it, if you haven't seen it) to distribute the \exists through Boolean combinations.

