MATH 570: MATHEMATICAL LOGIC

HOMEWORK 12

Due date: Dec 1 (Tue)

1. For $A \subseteq \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$, we say that f enumerates A if the image of f is A, i.e. $f(\mathbb{N}) = A$. A set $A \subseteq \mathbb{N}$ is called *recursively enumerable* (*r.e.* for short) if there is a recursive function $f : \mathbb{N} \to \mathbb{N}$ enumerating A.

Prove the following characterizations of recursive and Σ_1^0 sets:

- (a) A set $A \subseteq \mathbb{N}$ is recursive if and only if it is either finite or enumerable by a *strictly increasing* recursive function.
- (b) For a nonempty set $A \subseteq \mathbb{N}$, the following are equivalent: (1) A is Σ_1^0
 - (2) A is either finite or enumerable by an *injective* recursive function
 - (3) A is r.e.
- 2. (William Balderrama) Let τ be a finite signature and T a τ -theory. If T admits q.e. and is decidable (e.g. when complete), then it actually admits effective q.e.
- **3.** Show that $(\mathbb{N}, 0, S)$ admits effective quantifier elimination. Conclude that the only definable sets are the finite and cofinite sets.
- **4.** Let $\tau = (0, 1, +, -, \cdot, <)$ and $\mathbf{Q} = (\mathbb{Q}, 0, 1, +, -, \cdot, <)$.
 - (a) Show that for every subset $S \subseteq \mathbb{Q}$ that is definable in **Q** by a quantifier free formula, there is $q \in \mathbb{Q}$ such that $(q, \infty) \subseteq S$ or $(q, \infty) \cap S = \emptyset$.

HINT: Prove this by induction on the construction (length) of the quantifier-free formula defining S.

- (b) Use (a) to show that $Th(\mathbf{Q})$ does NOT admit quantifier elimination.
- 5. Show that the theory of vector spaces over \mathbb{Q} is diagram-complete and hence admits q.e. Conclude that the only definable sets in any \mathbb{Q} -vector space are the finite and cofinite sets.
- **6.** Let $\tau = (0, 1, +, -, \cdot)$ and $\mathbf{R} = (\mathbb{R}, 0, 1, +, -, \cdot)$.
 - (a) Using Tarski's theorem about $(\mathbb{R}, 0, 1, +, -, \cdot, <)$, prove that **R** is model-complete.
 - (b) Show that every subset $S \subseteq \mathbb{R}$ that is definable in **R** by a q.f. formula is either finite or cofinite.
 - (c) Deduce that **R** does not admit q.e.