MATH 570: MATHEMATICAL LOGIC

HOMEWORK 10

Due date: Nov 10 (Tue)

- 1. (a) Show that we can replace "recursive" by "arithmetical" in the statement of Gödel's Incompleteness theorem (the original form), i.e. prove that if $T \subseteq \text{Th}(\mathbf{N})$ is arithmetical, then it is incomplete.
 - (b) Show that there exists an arithmetical completion of PA, i.e. there is a complete $\tau_{\text{arthm-theory }T \supseteq \text{PA}$ such that $T^{\neg} = \{ {}^{r} \phi^{\neg} : \phi \in T \}$ is an arithmetical subset of N. Conclude that we CANNOT replace "recursive" by "arithmetical" in Rosser's form of the First Incompleteness theorem.

HINT: Mimic the inductive version of the proof that any theory has a (syntactically) consistent completion.

- 2. For each of the following statements, prove or give a counter-example to the assertion that it is true for every τ_{arthm} -sentence θ :
 - (a) $PA \vdash \theta \iff N \models \mathbf{Provable}_{PA}([\theta]),$
 - (b) $PA \vdash \theta \rightarrow \mathbf{Provable}_{PA}([\theta]),$
 - (c) $PA \vdash \theta \implies PA \vdash \mathbf{Provable}_{PA}([\theta]).$
- **3.** Let ϕ and θ be τ_{arthm} -sentences. Consider the following statements:

$$1 \operatorname{PA} \vdash \phi \implies \operatorname{PA} \vdash \theta;$$

2 PA $\vdash \phi \rightarrow \theta$.

Are they equivalent for all ϕ, θ ? If not, which implication holds and which may fail? Prove your answers.

- 4. For each of the following τ_{arthm} -sentences, prove or give a counter-example to the assertion that it is provable in PA for every τ_{arthm} -sentence θ :
 - (a) **Provable**_{PA}($[\theta]$) $\rightarrow \theta$
 - (b) $\mathbf{Provable}_{\mathrm{PA}\cup\{\neg\theta\}}([\theta]) \rightarrow \mathbf{Provable}_{\mathrm{PA}}([\theta])$
 - (c) $\mathbf{Provable}_{PA}([\theta]) \rightarrow \neg \mathbf{Provable}_{PA}([\neg \theta])$
 - (d) $\mathbf{Provable}_{PA}(\mathbf{Provable}_{PA}([\theta])) \rightarrow \mathbf{Provable}_{PA}([\theta])$
- 5. Let τ be a finite signature. State and prove Loeb's theorem for any recursive τ -theory T that interprets PA.