MATH 570: MATHEMATICAL LOGIC, FALL 2015

HOMEWORK 1

Due date: not sure yet, no earlier than next Tuesday (Sep 1)

- 1. Define appropriate signatures for vector spaces over \mathbb{Q} .
- **2.** If $h : \mathbf{A} \to \mathbf{B}$ is a τ -homomorphism then the image h(A) is a universe of a substructure of \mathbf{B} .
- 3. Prove that if τ does not contain any relation symbols, then any bijective τ -homomorphism is a τ -isomorphism. (That's why this happens with groups and rings, but not with graphs or orderings.)
- **4.** A structure is called *rigid* if it has no automorphisms¹ other than the identity. Show that the structures $\mathbf{N} = (\mathbb{N}, 0, S, +, \cdot)$ and $\mathbf{Q} = (\mathbb{Q}, 0, 1, +, \cdot)$ are rigid.
- 5. A structure \mathbf{M} is called *ultrahomogeneous* if given any isomorphism between two finitely generated substructures, it extends to an automorphism of the whole structure, i.e. if \mathbf{A}, \mathbf{B} are finitely generated substructures of \mathbf{M} and $h : \mathbf{A} \to \mathbf{B}$ is an isomorphism, then there is an automorphism \overline{h} of \mathbf{M} with $\overline{h} \supseteq h$. Show that $(\mathbb{Q}, <)$ is ultrahomogeneous. The same proof should also work to show that $(\mathbb{R}, <)$ is ultrahomogeneous.
- **6.** For τ -structures \mathbf{A}, \mathbf{B} , we write $\mathbf{A} \equiv \mathbf{B}$ if for every τ -sentence ϕ , $\mathbf{A} \models \phi \iff \mathbf{B} \models \phi$.
 - (a) For a fixed *finite* group **G** (as a τ_{group} -structure), show that there is a τ_{group} -sentence ϕ such that for any τ_{group} -structure **M**,

$$\mathbf{M} \vDash \phi \iff \mathbf{M} \simeq \mathbf{G}.$$

(b) More generally, let τ be a *finite* signature and **A** be a *finite* τ -structure. Show that there is a τ -sentence ϕ such that for any τ -structure **B**,

$$\mathbf{B} \models \phi \iff \mathbf{B} \simeq \mathbf{A}$$
.

In particular,

$$B \equiv A \iff B \simeq A$$
.

¹isomorphism with itself