MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 5
Due on Wednesday, Oct 7

Exercises from the textbook. 3.41, 3.44' 4.11, 4.12, 4.20(a)(b), 4.29, 4.31

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

1. Prove that for any a,b € R,
n—-1
a”—b"=(a-") Z a1
i=0

with the convention that any number (including 0) to the power 0 is 1.

HINT: Prove this by induction on n. To make sure you don’t get confused with indices
of the summations, replace the Y. notation with the usual (more informal) notation:

n-1
Z a7 = g™+ a2 + a0 + L+ a? T+ a4
i=0

2. Let (an)ns0 be a sequence of real numbers satisfying
ag=0,a1 =1
(pyo = Apy1 + Gy
This is the well-known Fibonacci sequence. Prove that for every n >0,
%:W—W’
-
where ¢ and 1) are the two distinct solutions to z — 1 = 1; in other words, ¢ is the golden

)

ratio “T‘/S and 1 is its conjugate %5

HinT: First, write the proposed expression for a, using only numbers, then prove it by
strong induction.

3. For each of the following functions, determine whether it is injective/surjective/bijective.
(a) f:N— N defined by f(n)=3n-2.
(b) f:N — Z defined by

_ 5 if n is even
f(n)—{ 21 if n is odd

(¢) f:Z — N defined by f(m):=m?2+3

4. Let O and E denote the sets of odd and even natural numbers, respectively. Find bijec-
tions between the following sets:

'HINT FOR 3.44: The main point is that starting from 18, all numbers are of this form. Prove this by

strong induction.



(a) O and N;
(b) E and N;
(¢) O and E.

Make sure to prove that the functions you define are indeed bijections by either showing
that they are injective and surjective, or that they admit inverse functions.
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