DESCRIPTIVE SET THEORY

HOMEWORK 9

Due on Tuesday, Apr 8

All problems below are to be presented.

- 1. (a) Show that any Polish space admits a finer Polish topology that is zero-dimensional and has the same Borel sets, i.e. for a given Polish space (X, \mathcal{T}) , there exists a zero-dimensional Polish topology $\mathcal{T}_0 \supseteq \mathcal{T}$ such that $\mathcal{B}(\mathcal{T}_0) = \mathcal{B}(\mathcal{T})$.
 - (b) Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be Polish and $f : X \to Y$ a Borel isomorphism. Show that there are Polish topologies $\mathcal{T}'_X \supseteq \mathcal{T}_X, \mathcal{T}'_Y \supseteq \mathcal{T}_Y$ with $\mathcal{B}(\mathcal{T}'_X) = \mathcal{B}(\mathcal{T}_X), \ \mathcal{B}(\mathcal{T}'_Y) = \mathcal{B}(\mathcal{T}_Y)$ such that $f : (X, \mathcal{T}'_X) \to (Y, \mathcal{T}'_Y)$ is a homeomorphism. Moreover, $\mathcal{T}'_X, \mathcal{T}'_Y$ can be taken to be zero-dimensional.
 - (c) Let G be a countable group and consider a Borel action of G on a Polish space (X, \mathcal{T}) , i.e. each $g \in G$ acts as a Borel automorphism of X. Prove that there exists a Polish topology $\mathcal{T}_0 \supseteq \mathcal{T}$ with $\mathcal{B}(\mathcal{T}_0) = \mathcal{B}(\mathcal{T})$ that makes the action of G continuous. Moreover, \mathcal{T}_0 can be taken to be zero-dimensional.
- **2.** Show that the class of analytic sets is closed under
 - (a) continuous preimages,
 - (b) continuous images,
 - (c) countable unions,
 - (d) countable intersections.

Can we replace "continuous" by "Borel" above?

- **3.** Let X be Polish and let $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of disjoint analytic sets in X. Prove that there are disjoint Borel sets $\{B_n\}_{n\in\mathbb{N}}$ with $B_n \supseteq A_n$.
- **4.** Let X, Y be Polish and $f : X \to Y$ Borel. Show that for $A \subseteq f(X)$, if $f^{-1}(A)$ is Borel, then A is Borel relative to f(X), i.e. there is a Borel $A' \subseteq Y$ such that $A = A' \cap f(X)$.
- 5. Let X be Polish and let E be an analytic equivalence relation on X (i.e. $E \subseteq X^2$ is analytic).
 - (a) Show that for an analytic set A, its saturation $[A]_E = \{x \in X : \exists y \in A(xEy)\}$ is also analytic.
 - (b) Let $A, B \subseteq X$ be disjoint invariant analytic sets (i.e. $[A]_E = A, [B]_E = B$). Prove that there is an invariant Borel set D separating A and B, i.e. $D \supseteq A$ and $D \cap B = \emptyset$.
- 6. Construct an example of a closed equivalence relation E on a Polish space X and a closed set $C \subseteq X$ such that the saturation $[C]_E$ is analytic but not Borel.

REMARK: This shows that in part (a) of the previous problem, "analytic" is the best we can hope for.

HINT: Take analytic $A \subseteq \mathcal{N}$ that's not Borel and let $C \subseteq \mathcal{N}^2$ be a closed set projecting down onto A. Define an appropriate equivalence relation E on \mathcal{N}^2 (i.e. $E \subseteq \mathcal{N}^2 \times \mathcal{N}^2$).