DESCRIPTIVE SET THEORY

HOMEWORK 8

Due on Tuesday, Apr 1 (no joke)

All problems below are to be presented.

- 1. Prove the following facts about the density topology on \mathbb{R} . (Below λ denotes the Lebesgue measure on \mathbb{R} and all topological terms are with respect to the density topology.)
 - (a) Every nonempty open set has positive measure.
 - (b) For a Lebesgue measurable set $A \subseteq \mathbb{R}$, explicitly compute Int(A) and \overline{A} , and conclude that $\lambda(Int(A)) = \lambda(A) = \lambda(\overline{A})$.
- **2.** Consider \mathbb{R} with the density topology and Lebesgue measure λ . For $A \subseteq \mathbb{R}$, prove that the following are equivalent:
 - (1) A is nowhere dense in the density topology;
 - (2) A is meager in the density topology;
 - (3) A is λ -null.

Conclude that A has the BP in the density topology if and only if it is Lebesgue measurable.

- **3.** Let $X = \mathbb{I}^{\mathbb{N}}$ and put $C_0 = \{(x_n)_{n \in \mathbb{N}} : x_n \to 0\}$. Show that C_0 is in $\Pi_3^0(X)$.
- 4. Let X be a topological space, $Y \subseteq X$, and let ξ be an ordinal with $1 \le \xi < \omega_1$. Prove the following:
 - (a) If Γ is one of $\Sigma_{\xi}^{0}, \Pi_{\xi}^{0}, \mathcal{B}$, then $\Gamma(Y) = \Gamma(X) \downarrow_{Y} := \{A \cap Y : A \in \Gamma(X)\}.$
 - (b) We also always have $\Delta_{\xi}^{0}(Y) \supseteq \Delta_{\xi}^{0}(X) \downarrow_{Y}$. If moreover, $Y \in \Delta_{\xi}^{0}(X)$, then we also have $\Delta_{\xi}^{0}(Y) \subseteq \Delta_{\xi}^{0}(X) \downarrow_{Y}$. However, give an example of a Polish space X and $Y \subseteq X$ such that the last inclusion is false for $\xi = 1$.
- 5. A class Γ of sets is called self-dual if it is closed under complements, i.e. $\Gamma = \Gamma$. Show that if Γ is a self-dual class of sets in topological spaces that is closed under continuous preimages, then for any topological space X there does not exist an X-universal set for $\Gamma(X)$. Conclude that neither the class $\mathcal{B}(X)$ of Borel sets, nor the classes $\Delta^0_{\xi}(X)$, can have X-universal sets.
- **6.** Letting X be a separable metrizable space and $\lambda < \omega_1$ be a limit ordinal, put

$$\mathbf{\Omega}^{0}_{\lambda}(X) \coloneqq \bigcup_{\xi < \lambda} \mathbf{\Sigma}^{0}_{\xi}(X) \ \left(= \bigcup_{\xi < \lambda} \mathbf{\Delta}^{0}_{\xi}(X) = \bigcup_{\xi < \lambda} \mathbf{\Pi}^{0}_{\xi}(X)\right)$$

(a) Let Y be an uncountable Polish space and prove that there exists a set $P \subseteq \Delta_{\lambda}^{0}(Y \times X)$ that parameterizes $\Omega_{\lambda}^{0}(X)$.

HINT: First construct such a set for $Y = \mathbb{N} \times \mathcal{C}$. Then conclude it for $Y = \mathcal{C}$ using the fact that the following functions are continuous: $()_0 : \mathcal{C} \to \mathbb{N}$ and $()_1 : \mathcal{C} \to \mathcal{C}$ defined for $y \in \mathcal{C}$ by

$$y = 1^{(y)_0} 0^{(y)_1}$$

Finally, conclude the statement for any Y using the perfect set property.

- (b) Conclude that if X is uncountable Polish, then $\Delta^0_{\lambda}(X) \not\supseteq \Omega^0_{\lambda}(X)$.
- 7. Let X, Y be topological spaces and let $\text{proj}_X : X \times Y \to X$ be the projection function. Prove the following statements:
 - (a) proj_X is continuous and open (i.e. maps open sets to open sets).
 - (b) proj_X does not in general map closed sets to closed sets, even for X = Y = R. REMARK: We will see shortly in the course that for certain $Y = \mathcal{N}$, the projection of a closed set may not even be Borel in general.
 - (c) For X = Y = R (or in general any σ -compact Hausdorff space), proj_X maps closed sets to σ -compact (and hence F_{σ}) sets.
 - (d) (Tube lemma) If Y is compact, then proj_X indeed maps closed sets to closed sets. HINT: It is perhaps tempting to use sequences, but this would only work for firstcountable spaces. Instead, use the open cover definition of compact and show that for closed $F \subseteq X \times Y$, every point $x \in X \setminus \operatorname{proj}_X(F)$ has an open neighborhood disjoint from $\operatorname{proj}_X(F)$. The "correct" solution should use nothing but definitions.