DESCRIPTIVE SET THEORY

HOMEWORK 7

Due on Tuesday, Mar 18

- (Present) Let G be a Polish group (i.e. a topological group whose topology happens to be Polish) and let H < G be a subgroup. Prove that H is Polish iff H is closed.
 HINT: Consider H inside H. What is the Baire category status (meager/non-meager/comeager) of H inside H? If H ⊊ H, look at the cosets.
- 2. (Present) Let G be a group acting continuously on a Baire space X (i.e. each element acts as a homeomorphism of X). A set $A \subseteq X$ is called invariant if gA = A for all $g \in G$. The action $G \curvearrowright X$ is called *generically ergodic* if every invariant set $A \subseteq X$ with the BP is either meager or comeager (also known as the first topological 0 1 law). For a set $A \subseteq X$, denote by $[A]_G$ the saturation of A, namely $[A]_G = \bigcup_{g \in G} g(A)$.
 - (a) Prove that the following are equivalent:
 - (1) $G \curvearrowright X$ is generically ergodic;
 - (2) Every invariant nonempty open set is dense;
 - (3) (Homogeneity) For every nonempty open sets $U, V \subseteq X$, there is $g \in G$ such that $g(U) \cap V \neq \emptyset$.
 - (b) Prove that if X is second countable, then the above conditions are equivalent to the existence of a dense orbit.

HINT: Prove that (1) implies there is a dense orbit by taking a countable basis $\{U_n\}_{n\in\mathbb{N}}$ and considering $\bigcap_n [U_n]_G$.

3. (Present) Show that the Kuratowski-Ulam theorem fails if A does not have the BP by constructing a non-meager set $A \subseteq \mathbb{R}^2$ (using AC) so that no three points of A are on a straight line.

HINT: Note that there are only continuum many F_{σ} sets, so take a transfinite enumeration $(F_{\xi})_{\xi<2^{\aleph_0}}$ of all *meager* F_{σ} sets, and construct a sequence $(a_{\xi})_{\xi<2^{\aleph_0}}$ of points in \mathbb{R}^2 by transfinite recursion so that for each $\xi<2^{\aleph_0}$,

$$\{a_{\lambda}:\lambda\leq\xi\}\notin F_{\xi},$$

and no three of the points in $\{a_{\lambda} : \lambda \leq \xi\}$ lie on a straight line.

HINT: Recall that in perfect Polish spaces (such as \mathbb{R}, \mathbb{R}^2), any non-meager subset with the BP contains a copy of the Cantor space (this is because it contains a non-meager G_{δ} set). Now if $A := \{a_{\lambda} : \lambda \leq \xi\} \subseteq F_{\xi}$, apply Kuratowski-Ulam to F_{ξ} to find $x \in \mathbb{R}$ such that $(F_{\xi})_x$ is meager and the vertical line $L_x = \{(x, y) \in \mathbb{R} : y \in \mathbb{R}\}$ is disjoint from A.

- 4. (Present) Show that if X, Y are second countable Baire spaces, so is $X \times Y$.
- **5. Definition.** A *filter* on a set X is a set $\mathcal{U} \subseteq Pow(X)$ such that
 - (i) (Nontriviality) $X \in \mathcal{U}$ but $\emptyset \notin \mathcal{U}$;

- (ii) (Upward closure) $A \in \mathcal{U}, B \supseteq A \Rightarrow B \in \mathcal{U};$
- (iii) (Closure under finite intersections) $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$.

A filter \mathcal{U} is called an *ultrafilter* if $A \notin \mathcal{U} \Rightarrow A^c \in \mathcal{U}$ for every $A \subseteq X$. Finally, an ultrafilter is called *principal* if for some $x \in X$, $\{x\} \in \mathcal{U}$ (or, equivalently, $\mathcal{U} = \{A \subseteq X : x \in A\}$).

It is useful to think of a filter \mathcal{U} as the family of all conull sets of a $\{0, 1\}$ -valued finitely additive measure $\mu_{\mathcal{U}}$ on a subalgebra of Pow(X). In other words, sets in \mathcal{U} should be thought of as large sets. \mathcal{U} being an ultrafilter simply means that $\mu_{\mathcal{U}}$ is defined on all of Pow(X); in other words, if a set is not large then it is small (i.e. there are no intermediate sets). Also, \mathcal{U} being principal means that $\mu_{\mathcal{U}}$ is a Dirac measure (i.e. a point-mass at some point x).

- (a) (AC) Prove that for every infinite set X, there exists a non-principal ultrafilter on X; do it by showing that every filter is contained in an ultrafilter and applying this to the filter of cofinite sets (called the Fréchet filter).
- (b) (Present) Identifying Pow(\mathbb{N}) with $\mathcal{C} = 2^{\mathbb{N}}$, view ultrafilters on \mathbb{N} as subsets of \mathcal{C} and show that no non-principal ultrafilter \mathcal{U} has the BP (as a subset of \mathcal{C}).
- 6. (I'll present this, but you read it as it is used in the problems below.) Using the outline below, prove Pettis's theorem:

Theorem (Pettis). Let G be a topological group and $A \subseteq G$ have the BP. If A is nonmeager, then $A^{-1}A$ contains an open neighborhood of the identity 1_G ; in fact if $U \Vdash A$, then $U^{-1}U \subseteq A^{-1}A$.

Step 1. Recall from the last homework that G must be Baire.

Step 2. Note that for any sets $B, C \subseteq G$,

$$B \subseteq C^{-1}C \iff \forall h \in B \ (Ch \cap C \neq \emptyset). \tag{(*)}$$

Step 3. Let $U \subseteq G$ be nonempty open such that $U \Vdash A$. Fix arbitrary $g \in U$ and note that $V = q^{-1}U \subseteq U^{-1}U$ is an open neighborhood of 1_G . Thus, by $(*), h \in V, Uh \cap U \neq \emptyset$.

Step 4. Conclude that for each $h \in V$, $Ah \cap A \neq \emptyset$, and hence, by (*) again, $V \subseteq A^{-1}A$.

Step 5. Note that we have shown $g^{-1}U \subseteq A^{-1}A$ for arbitrary $g \in U$, and thus, $U^{-1}U \subseteq A^{-1}A$.

- 7. (Present) Let G be a Baire topological group (i.e. G is non-meager). Prove that any non-meager subgroup H < G with the BP is actually clopen! In particular, if H has countable index in G, then H is clopen.
- 8. (Present)
 - (a) Automatic continuity: Let G, H be topological groups, where G is Baire and H is separable. Then every Baire measurable group homomorphism $\phi: G \to H$ is actually continuous!

HINT: Enough to prove continuity at 1_G , so let $U \ni 1_H$ be open and take an open neighborhood $V \ni 1_H$ such that $V^{-1}V \subseteq U$. Using the separability of H, deduce that $\phi^{-1}(hV)$ is non-meager for some $h \in H$ and apply Pettis's theorem. (b) Conclude that if $f: (\mathbb{R}, +) \to (\mathbb{R}, +)$ is a Baire measurable group homomorphism, then for some $a \in \mathbb{R}$, f(x) = ax for all $x \in \mathbb{R}$.

HINT: First show this for integers, then for rationals, etc.