DESCRIPTIVE SET THEORY

HOMEWORK 6

Due on Tuesday, Mar 11

1. (Present) A finite bounded game on a set A is a game similar to infinite games, but the players play at most n number of steps before the winner is decided, for some fixed number $n \ge 1$ (say a million). More formally, the game is a tree $T \subseteq A^{< n}$, for some n, and the runs of the game are exactly the elements of the set Leaves(T) of all leaves of T, so the payoff set is a subset $D \subseteq \text{Leaves}(T)$. Player I wins the run $s \in \text{Leaves}(T)$ of the game iff $s \in D$. Consequently, Player II wins iff $s \in \text{Leaves}(T) \setminus D$. All games that appear in real life are such games, e.g. chess (counting ties as a win for Player II).

Prove the determinacy of finite bounded games.

HINT: Let's write down what it means for Player I to have a winning strategy in this game, assuming for simplicity that n is even and that all of the runs of the game are of length exactly n:

$$\exists a_1 \forall a_2 \dots \exists a_{n-1} \forall a_n ((a_1, \dots, a_n) \in D).$$

What happens when you negate this statement?

- 2. (Present) A finite game on a set A is a game similar to infinite games, but the players play only finitely many steps before the winner is decided. More formally, it is a (possibly infinite) tree $T \subseteq A^{<\mathbb{N}}$ that has no infinite branches, and the set of runs is Leaves(T), so the payoff set is a subset $D \subseteq \text{Leaves}(T)$. Player I wins the run $s \in \text{Leaves}(T)$ of the game iff $s \in D$. Consequently, Player II wins iff $s \in \text{Leaves}(T) \setminus D$.
 - (a) Prove the determinacy of finite games.

HINT: Call a position $s \in T$ determined, if from that point on, one of the players has a winning strategy. Thus, no player has a winning strategy in the beginning iff \emptyset is undetermined. What can you say about extensions of undetermined positions?

- (b) Conclude the determinacy of clopen infinite games (i.e. the games defined in class, where the runs are elements of $A^{\mathbb{N}}$).
- 3. (This problem is fun, think about it; it's not hard but it's tricky.) In ZF (in particular, don't use AC or \neg AD), define a game with rules G(T, D) on the set $A = \text{Pow}(\mathbb{N}^{\mathbb{N}})$ (i.e. define a pruned tree $T \subseteq A^{<\mathbb{N}}$ and a set $D \subseteq A^{\mathbb{N}}$), so that ZF+ \neg AD implies that this game is undetermined. In other words, you have to define the tree T and the payoff set D without using \neg AD, but then prove that the game G(T, D) is undetermined using \neg AD. HINT: Note that besides playing subsets of $\mathbb{N}^{\mathbb{N}}$, players can also play natural numbers in the sense that $\mathbb{N} \hookrightarrow \text{Pow}(\mathbb{N}^{\mathbb{N}})$ by $n \mapsto \{(n)_{i \in \mathbb{N}}\}$.
- 4. (Present) Let X be a second countable Baire space. Show that the σ -ideal MGR(X) has the countable chain condition in BP(X), i.e. there is no uncountable family $\mathcal{A} \subseteq BP(X)$ of non-meager sets such that for any two distinct $A, B \in \mathcal{A}, A \cap B$ is meager.

- **5.** (Present) Let X be a topological space.
 - (a) If $A_n \subseteq X$, then for any open $U \subseteq X$,

$$U \Vdash \bigcap_n A_n \iff \forall n(U \Vdash A_n).$$

(b) If X is a Baire space, A has the BP in X and $U \subseteq X$ is nonempty open, then

$$U \Vdash A^c \iff \forall V \subseteq U(V \nvDash A),$$

where V varies over a weak basis¹ for X.

(c) If X is a Baire space, the sets $A_n \subseteq X$ have the BP, and U is nonempty open, then $U \Vdash \bigcup_n A_n \iff \forall V \subseteq U \exists W \subseteq V \exists n (W \Vdash A_n).$

where V, W vary over a weak basis for X.

- 6. (Present) Let G be a topological group, i.e. a group with a topology on it so that group multiplication $(x, y) \rightarrow xy$ and inverse $x \rightarrow x^{-1}$ are continuous functions. Prove that G is Baire iff G is non-meager.
- **7.** (Present) Let X be a topological space and $A \subseteq X$.
 - (a) Show that U(A) is regular open, i.e. it is equal to the interior of its closure.
 - (b) If moreover X is a Baire space and A has the BP, then U(A) is the unique regular open set U with A = U.

¹A weak basis for a topological space X is a collection \mathcal{V} of nonempty open sets such that every nonempty open set $U \subseteq X$ contains at least one $V \in \mathcal{V}$.