DESCRIPTIVE SET THEORY

HOMEWORK 5

Due on Tuesday, Mar 4

- 1. Show that the perfect kernel of a Polish space X is the largest perfect subset of X, i.e. it contains all other perfect subsets.
- **2.** (Present) Let X be separable metrizable. Show that

 $\mathcal{K}_p(X) = \{ K \in K(X) : K \text{ is perfect} \}$

is a G_{δ} set in K(X). In particular, if X is Polish, then so is $\mathcal{K}_p(X)$.

- **3.** (Present)
 - (a) Let X be a Polish space. Show that if $K \subseteq X$ is countable and compact, then its Cantor-Bendixson rank $|K|_{CB}$ is not a limit ordinal.
 - (b) For each non-limit ordinal $\alpha < \omega_1$, construct a countable compact subset K_{α} of C, whose Cantor-Bendixson rank is exactly α .
- **4.** (Present) Let $T \subseteq \mathbb{N}^{<\mathbb{N}}$ be a tree.
 - (a) Suppose T is pruned. Find a condition (on the nodes of the tree T) such that T satisfies it if and only if [T] is perfect (as a subset of \mathcal{N}).
 - (b) Define a Cantor-Bendixson derivative T' of T, as well as the iterated derivatives $(T^{\alpha})_{\alpha \in ON}$, such that $[T^{\infty}]$ is the perfect kernel of [T], i.e. $[T^{\infty}] = [T]^{\infty}$.

REMARK: The statement of this problem is somewhat vague and informal, but understanding it is part of the challenge.

- **5.** Let X be a second countable zero-dimensional space.
 - (a) Prove Kuratowski's reduction property: If $A, B \subseteq X$ are open, there are open $A^* \subseteq A, B^* \subseteq B$ with $A^* \cup B^* = A \cup B$ and $A^* \cap B^* = \emptyset$.

HINT: Write A and B as countable unions of clopen sets: $A = \bigcup_n A_n$, $B = \bigcup_n B_n$. Put those points x of A in A^* that are covered by A_n no later than by B_n , i.e. if n is the smallest number such that $x \in A_n \cup B_n$, then $x \in A_n$.

- (b) Conclude the following separation property: For any disjoint closed sets $A, B \subseteq X$, there is a clopen set C separating A and B, i.e. $A \subseteq C$ and $B \cap C = \emptyset$.
- **6.** (Present)
 - (a) Let X be a nonempty zero-dimensional Polish space such that all of its compact subsets have empty interior. Fix a complete compatible metric and prove that there is a Luzin scheme $(A_s)_{s \in \mathbb{N}^{<\mathbb{N}}}$ that has vanishing diameter and satisfies the following:

- (i) $A_{\varnothing} = X;$
- (ii) A_s is nonempty clopen;
- (iii) $A_s = \bigcup_{i \in \mathbb{N}} A_{s^{i}}$.

HINT: Assuming A_s is defined, cover it by countably many clopen sets of diameter at most $\delta < 1/n$, and choose the δ small enough so that any such cover is necessarily infinite.

- (b) Derive the Alexandrov-Urysohn theorem, i.e. show that the Baire space is the only topological space, up to homeomorphism, that satisfies the hypothesis of (a).
- (c) Let $X \subseteq \mathbb{R}$ be G_{δ} and such that $X, \mathbb{R} \setminus X$ are dense in \mathbb{R} . Show that X is homeomorphic to \mathcal{N} . Prove that the same fact also holds when \mathbb{R} is replaced by a zero-dimensional nonempty Polish space. Show that it may fail if \mathbb{R} is replaced by \mathbb{R}^2 .
- 7. The following steps outline a proof of the Baire category theorem for locally compact Hausdorff spaces.
 - (1) Show that compact Hausdorff spaces are normal.
 - (2) Using part (1), prove that in locally compact Hausdorff space X, for every nonempty open set U and every point $x \in U$, there is a nonempty open precompact¹ $V \subseteq U$ with $\overline{V} \subseteq U$.
 - (3) Prove that locally compact Hausdorff spaces are Baire.
- 8. (Present)
 - (a) Show that category notions are preserved under continuous open preimages; more precisely, for a continuous open map $f: X \to Y$ between topological spaces X, Y, and a set $B \subseteq Y$, if B is nowhere dense (resp. meager, dense, comeager), then so is $f^{-1}(B)$. In particular, this is true about projections.
 - (b) Show that part (a) is false if preimages are replaced by images; i.e. construct an example of a continuous open map $f: X \to Y$ and a nowhere dense set $A \subseteq X$ such that f(A) is not nowhere dense.
- **9.** (I will present this one, but you read/think about it.) Recall that C([0,1]) is a Polish space with the uniform metric. Show that the generic element of C([0,1]) is nowhere differentiable following the outline below.
 - (1) Prove that given $m \in \mathbb{N}$, any function $f \in C([0,1])$ can be approximated (in the uniform metric) by a piecewise linear function $g \in C([0,1])$, whose linear pieces (finitely many) have slope $\pm M$, for some $M \ge m$.
 - (2) For each $n \ge 1$, let E_n be the set of all functions $f \in C([0,1])$, for which there is $x_0 \in [0,1]$ (depending on f) such that $|f(x) f(x_0)| \le n|x x_0|$ for all $x \in [0,1]$. Show that E_n is nowhere dense using the fact that if g is as in (1) with m = 2n, then some open neighborhood of g is disjoint from E_n .
- 10. (Present) Let X be a perfect Polish space and show that a generic compact subset of X is perfect, i.e. show that the set $\mathcal{K}_p(X)$ is comeager in K(X) (see Problem 2).

¹Precompact sets are those whose closure is compact.