
DESCRIPTIVE SET THEORY

HOMEWORK 4

Due on Tuesday, Feb 25

1. Following the outline below, prove the equivalence of the three definitions of compactness
for metric spaces listed in Proposition 3.4.

(1)⇒ (2): For a sequence (xn)n, let Km be the closure of the tail {xn}n≥m of the sequence
and use the intersection-of-closed sets version of the definition of compactness.

(2)⇒ (3): For total boundedness, fix an ε > 0 and start constructing an ε-net F by adding
elements to your F that are not yet covered by B(F, ε). For completeness, note that if a
subsequence of a Cauchy sequence converges, then so does the entire sequence.

(3) ⇒ (2): Let (xn)n be a sequence in X. Think of the xn-s as pigeons and a finite ε-net
as holes.

(2) and (3)⇒ (1): Somewhat trickier, look up Theorem 0.25 in Folland’s “Real Analysis”.

2. (I will present this one, but you think about it.) Let X be a compact metric space and Y
be a separable complete metric space. Let C(X,Y ) be the space of continuous functions
from X to Y equipped with the uniform metric, i.e. for f, g ∈ C(X,Y ),

du(f, g) = sup
x∈X

dY (f(x), f(y)).

Prove that C(X,Y ) is a separable complete metric space, hence Polish.

Hint 1: Proving separability is tricky, so you may want to first prove it for X = [0,1]
and Y = R. In the general case (to prove separability), note that by uniform continuity,

C(X,Y ) =⋃

n
An,m,

for every n ∈ N, where

An,m = {f ∈ C(X,Y ) ∶ ∀x, y ∈X(dX(x, y) < 1/n⇒ dY (f(x), f(y)) < 1/m)}.

Realize that it is enough to show that for any n,m ∈ N, there is a countable Bn,m ⊆ An,m
such that for any f ∈ An,m there is g ∈ Bn,m with du(f, g) < 3/m. Now fix n,m and try to
construct Bn,m; when doing so, don’t try to define each function in Bn,m by hand as you
would maybe do in the case X = [0,1]; instead, carefully pick them out of functions in
An,m.

Hint 2: This is Theorem 4.19 in Kechris’s ”Classical Descriptive Set Theory”.

3. (Present) Show that Hausdorff metric on K(X) is compatible with the Vietoris topology.

4. (Present) Let (X,d) be a metric with d ≤ 1. For (Kn)n ⊆ K(X) ∖ {∅} and nonempty
K ∈K(X):
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(a) δ(K,Kn)→ 0⇒K ⊆ T limnKn;

(b) δ(Kn,K)→ 0⇒K ⊇ T limnKn.

In particular, dH(Kn,K)→ 0⇒K = T limnKn. Show that the converse may fail.

5. Let (X,d) be a compact metric with d ≤ 1. For sequence (Kn)n ⊆K(X) ∖ {∅}, show the
following:

(a) if T limnKn ≠ ∅ then δ(T limnKn,Km)→ 0 as m→∞;

(b) δ(Km,T limnKn)→ 0 as m→∞.

So if K = T limnKn exists, dH(Kn,K)→ 0.

6. Let (X,d) be a metric space with d ≤ 1. Then x ↦ {x} is an isometric embedding of X
into K(X).

7. (Present) Let (X,d) be a metric space with d ≤ 1 and assume Kn →K. Then any sequence
(xn)n∈N with xn ∈Kn has a subsequence converging to a point in K.

8. Let X be metrizable.

(a) (Present) The relation “x ∈K” is closed, i.e. {(x,K) ∶ x ∈K} is closed in X ×K(X).

(b) The relation “K ⊆ L” is closed, i.e. {(K,L) ∶K ⊆ L} is closed in K(X)
2.

(c) (Present) The relation “K ∩ L ≠ ∅” is closed, i.e. {(K,L) ∶ K ∩ L ≠ ∅} is closed in
K(X)

2.

(d) (Present) The map (K,L)↦K ∪L from K(X)
2 to K(X) is continuous.

(e) If Y is metrizable, then the map (K,L)↦K ×L from K(X)×K(Y ) into K(X × Y )

is continuous.

(f) (Present) Find a compact X for which the map (K,L)↦K∩L from K(X)
2 to K(X)

is not continuous.

9. (Present) Let X be a topological space.
(a) If X is nonempty perfect, then so is K(X) ∖ {∅}.
(b) If X is compact metrizable, then C(X) is perfect, where C(X) = C(X,R).

10. (Present) Show that any nonempty perfect compact Hausdorff space X has cardinality
at least continuum by constructing an injection from the Cantor space into X.

Hint: Mimic the proof for Polish spaces.

11. (Present) Let X be a nonempty perfect Polish space and let Q be a countable dense
subset of X. Show that Q is Fσ but not Gδ. Conclude that Q is not Polish in the relative
topology of R.
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