DESCRIPTIVE SET THEORY

HOMEWORK 4

Due on Tuesday, Feb 25

1. Following the outline below, prove the equivalence of the three definitions of compactness for metric spaces listed in Proposition 3.4.

 $(1) \Rightarrow (2)$: For a sequence $(x_n)_n$, let K_m be the closure of the tail $\{x_n\}_{n \ge m}$ of the sequence and use the intersection-of-closed sets version of the definition of compactness.

 $(2) \Rightarrow (3)$: For total boundedness, fix an $\epsilon > 0$ and start constructing an ϵ -net F by adding elements to your F that are not yet covered by $B(F, \epsilon)$. For completeness, note that if a subsequence of a Cauchy sequence converges, then so does the entire sequence.

 $(3) \Rightarrow (2)$: Let $(x_n)_n$ be a sequence in X. Think of the x_n -s as pigeons and a finite ϵ -net as holes.

- (2) and (3) \Rightarrow (1): Somewhat trickier, look up Theorem 0.25 in Folland's "Real Analysis".
- 2. (I will present this one, but you think about it.) Let X be a compact metric space and Y be a separable complete metric space. Let C(X,Y) be the space of continuous functions from X to Y equipped with the uniform metric, i.e. for $f, g \in C(X,Y)$,

$$d_u(f,g) = \sup_{x \in X} d_Y(f(x), f(y)).$$

Prove that C(X,Y) is a separable complete metric space, hence Polish.

HINT 1: Proving separability is tricky, so you may want to first prove it for X = [0, 1]and $Y = \mathbb{R}$. In the general case (to prove separability), note that by uniform continuity,

$$C(X,Y) = \bigcup_n A_{n,m},$$

for every $n \in \mathbb{N}$, where

$$A_{n,m} = \{ f \in C(X,Y) : \forall x, y \in X(d_X(x,y) < 1/n \Rightarrow d_Y(f(x),f(y)) < 1/m) \}.$$

Realize that it is enough to show that for any $n, m \in \mathbb{N}$, there is a countable $B_{n,m} \subseteq A_{n,m}$ such that for any $f \in A_{n,m}$ there is $g \in B_{n,m}$ with $d_u(f,g) < 3/m$. Now fix n, m and try to construct $B_{n,m}$; when doing so, don't try to *define* each function in $B_{n,m}$ by hand as you would maybe do in the case X = [0, 1]; instead, carefully *pick* them out of functions in $A_{n,m}$.

HINT 2: This is Theorem 4.19 in Kechris's "Classical Descriptive Set Theory".

- **3.** (Present) Show that Hausdorff metric on K(X) is compatible with the Vietoris topology.
- **4.** (Present) Let (X, d) be a metric with $d \leq 1$. For $(K_n)_n \subseteq K(X) \setminus \{\emptyset\}$ and nonempty $K \in K(X)$:

- (a) $\delta(K, K_n) \to 0 \Rightarrow K \subseteq \underline{\mathrm{T} \lim}_n K_n;$
- (b) $\delta(K_n, K) \to 0 \Rightarrow K \supseteq \overline{\mathrm{T} \lim}_n K_n$.

In particular, $d_H(K_n, K) \to 0 \Rightarrow K = T \lim_n K_n$. Show that the converse may fail.

- 5. Let (X, d) be a compact metric with $d \leq 1$. For sequence $(K_n)_n \subseteq K(X) \setminus \{\emptyset\}$, show the following:
 - (a) if $\underline{\mathrm{Tlim}}_n K_n \neq \emptyset$ then $\delta(\underline{\mathrm{Tlim}}_n K_n, K_m) \to 0$ as $m \to \infty$;
 - (b) $\delta(K_m, \overline{\mathrm{T\,lim}}_n K_n) \to 0 \text{ as } m \to \infty.$

So if $K = T \lim_{n \to \infty} K_n$ exists, $d_H(K_n, K) \to 0$.

- **6.** Let (X, d) be a metric space with $d \leq 1$. Then $x \mapsto \{x\}$ is an isometric embedding of X into K(X).
- 7. (Present) Let (X, d) be a metric space with $d \leq 1$ and assume $K_n \to K$. Then any sequence $(x_n)_{n \in \mathbb{N}}$ with $x_n \in K_n$ has a subsequence converging to a point in K.
- 8. Let X be metrizable.
 - (a) (Present) The relation " $x \in K$ " is closed, i.e. $\{(x, K) : x \in K\}$ is closed in $X \times K(X)$.
 - (b) The relation " $K \subseteq L$ " is closed, i.e. $\{(K, L) : K \subseteq L\}$ is closed in $K(X)^2$.
 - (c) (Present) The relation " $K \cap L \neq \emptyset$ " is closed, i.e. $\{(K, L) : K \cap L \neq \emptyset\}$ is closed in $K(X)^2$.
 - (d) (Present) The map $(K, L) \mapsto K \cup L$ from $K(X)^2$ to K(X) is continuous.
 - (e) If Y is metrizable, then the map $(K, L) \mapsto K \times L$ from $K(X) \times K(Y)$ into $K(X \times Y)$ is continuous.
 - (f) (Present) Find a compact X for which the map $(K, L) \mapsto K \cap L$ from $K(X)^2$ to K(X) is not continuous.
- **9.** (Present) Let X be a topological space.
 - (a) If X is nonempty perfect, then so is $K(X) \setminus \{\emptyset\}$.
 - (b) If X is compact metrizable, then C(X) is perfect, where $C(X) = C(X, \mathbb{R})$.
- 10. (Present) Show that any nonempty perfect compact Hausdorff space X has cardinality at least continuum by constructing an injection from the Cantor space into X.

HINT: Mimic the proof for Polish spaces.

11. (Present) Let X be a nonempty perfect Polish space and let Q be a countable dense subset of X. Show that Q is F_{σ} but not G_{δ} . Conclude that \mathbb{Q} is not Polish in the relative topology of \mathbb{R} .