DESCRIPTIVE SET THEORY

HOMEWORK 3

Due on Tuesday, Feb 18

1. (Present) Prove that any separable metric space has cardinality at most continuum.

Remark: This is true more generally for first-countable separable Hausdorff topological spaces, but false for general separable Hausdorff topological spaces (try to construct a counter-example).
2. (Present)
(a) Show that a metric space X is complete if and only if every decreasing sequence of closed sets $\left(B_{n}\right)_{n \in \mathbb{N}}$ with $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$ has nonempty intersection (in fact, $\bigcap_{n \in \mathbb{N}} B_{n}$ is a singleton).
(b) Show that the requirement in (a) that $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$ cannot be dropped. Do this by constructing a complete metric space that has a decreasing sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ of closed balls with $\bigcap_{n \in \mathbb{N}} B_{n}=\varnothing$.

Hint: Use \mathbb{N} as the underlying set for your metric space.
3. (Present) By definition, the class of G_{δ} sets is closed under countable intersections. Show that it is also closed under finite unions. Equivalently, the class of F_{σ} sets is closed under finite intersections.

Hint: Think in terms of quantifiers \forall and \exists rather than intersections and unions; for example, if $A=\bigcap_{n} U_{n}$, then $x \in A \Longleftrightarrow \forall n\left(x \in A_{n}\right)$.
4. (Present)
(a) Show that the Cantor set (with relative topology of \mathbb{R}) is homeomorphic to the Cantor space.
(b) Show that the Baire space \mathcal{N} is homeomorphic to a G_{δ} subset of the Cantor space \mathcal{C}.
(c) Show that the set of irrationals (with the relative topology of \mathbb{R}) is homeomorphic to the Baire space.

Hint: Use the continued fraction expansion.
5. (Present) Let $T \subseteq A^{<\mathbb{N}}$ be a tree and suppose it is finitely branching. Prove that [T] is compact.
6. (Present) Let $T \subseteq \mathbb{N}<\mathbb{N}$ be a tree. Define a total ordering $<$ on T such that $<$ is a wellordering if and only if T doesn't have an infinite branch.
7. Let S, T be trees on sets A, B, respectively. Prove the following using the outline below: If $f: G \rightarrow[T]$ is continuous, where $G \subseteq[S]$ is G_{δ}, then there is monotone $\phi: S \rightarrow T$ with $f=\phi^{*}$.

1. To understand the basic idea, first prove the statement assuming that $G=[S]$. In this case, let $\phi(s)$ be the longest $u \in T$ such that $|u| \leq|s|$ and $N_{u} \supseteq f\left(N_{s}\right)$.
2. Now assuming that $G=\bigcap_{n \in \mathbb{N}} U_{n}$, where $\left(U_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of open sets in [S] with $U_{0}=[S]$, modify the above definition to bound $|u|$ with $k(s)$ instead of $|s|$, where $k(s)$ is equal to the largest number $k \leq|s|$ such that $U_{k} \supseteq N_{s} \cap[S]$.
