DESCRIPTIVE SET THEORY

HOMEWORK 3

Due on Tuesday, Feb 18

1. (Present) Prove that any separable metric space has cardinality at most continuum.

REMARK: This is true more generally for first-countable separable Hausdorff topological spaces, but false for general separable Hausdorff topological spaces (try to construct a counter-example).

- **2.** (Present)
 - (a) Show that a metric space X is complete if and only if every decreasing sequence of closed sets $(B_n)_{n \in \mathbb{N}}$ with diam $(B_n) \to 0$ has nonempty intersection (in fact, $\bigcap_{n \in \mathbb{N}} B_n$ is a singleton).
 - (b) Show that the requirement in (a) that diam $(B_n) \to 0$ cannot be dropped. Do this by constructing a complete metric space that has a decreasing sequence $(B_n)_{n \in \mathbb{N}}$ of closed **balls** with $\bigcap_{n \in \mathbb{N}} B_n = \emptyset$.

HINT: Use \mathbb{N} as the underlying set for your metric space.

3. (Present) By definition, the class of G_{δ} sets is closed under countable intersections. Show that it is also closed under finite unions. Equivalently, the class of F_{σ} sets is closed under finite intersections.

HINT: Think in terms of quantifiers \forall and \exists rather than intersections and unions; for example, if $A = \bigcap_n U_n$, then $x \in A \iff \forall n(x \in A_n)$.

- **4.** (Present)
 - (a) Show that the Cantor set (with relative topology of ℝ) is homeomorphic to the Cantor space.
 - (b) Show that the Baire space \mathcal{N} is homeomorphic to a G_{δ} subset of the Cantor space \mathcal{C} .
 - (c) Show that the set of irrationals (with the relative topology of \mathbb{R}) is homeomorphic to the Baire space.

HINT: Use the continued fraction expansion.

- 5. (Present) Let $T \subseteq A^{<\mathbb{N}}$ be a tree and suppose it is finitely branching. Prove that [T] is compact.
- **6.** (Present) Let $T \subseteq \mathbb{N}^{<\mathbb{N}}$ be a tree. Define a total ordering < on T such that < is a well-ordering if and only if T doesn't have an infinite branch.

- 7. Let S, T be trees on sets A, B, respectively. Prove the following using the outline below: If $f: G \to [T]$ is continuous, where $G \subseteq [S]$ is G_{δ} , then there is monotone $\phi: S \to T$ with $f = \phi^*$.
 - 1. To understand the basic idea, first prove the statement assuming that G = [S]. In this case, let $\phi(s)$ be the longest $u \in T$ such that $|u| \leq |s|$ and $N_u \supseteq f(N_s)$.
 - 2. Now assuming that $G = \bigcap_{n \in \mathbb{N}} U_n$, where $(U_n)_{n \in \mathbb{N}}$ is a decreasing sequence of open sets in [S] with $U_0 = [S]$, modify the above definition to bound |u| with k(s) instead of |s|, where k(s) is equal to the largest number $k \leq |s|$ such that $U_k \supseteq N_s \cap [S]$.