DESCRIPTIVE SET THEORY
HOMEWORK 2

Due on Tuesday, Feb 11

1. (Present) Prove that Zermelo’s Theorem implies AC.

CAUTION: It is easy to accidentally use AC in your proof. Make sure you don’t.

2. (Present) Prove that AC implies Zorn’s Lemma.

OUTLINE: Let (A, <) be as in the statement of Zorn’s Lemma and assume for contradiction
that no element is maximal. Then for every a € A, the set succ(a) :=={be A:a < b} is
nonempty. Thus, by AC, there is a function f : A - A mapping each a to an element
in succ(a). Similarly, for every chain B ¢ A, the set U(B) :={a e A:Vbe B(b<a)}
is nonempty. Hence, denoting the set of all chains in A (including the empty set) by
Chains(A), AC provides a function g : Chains(A) - A mapping each chain B to an
element in U(B). Obtain a contradiction by defining an injection of x(A) into A using
transfinite induction: use f to define the successor cases and use g to define the 0 and
the limit cases.

REMARK: Alternatively, by the same transfinite induction, one can obtain an injection
of ON into A, contradicting ON being a proper class.

3. (Present) Prove that Zorn’s Lemma implies Zermelo’s Theorem.

HINT: For a set A, consider (WO(A),<), where WO(A) is as in the proof of Hartogs’
theorem in the notes.

4. Prove the following version of Hartogs’ theorem that doesn’t use Replacement axiom:

Theorem (Hartogs without Replacement). For every set A, there is a well-ordered set
(H(A),<m(ay) such that H(A) ¢ A and (H(A),<u(ay) is <-least such well-ordering, i.e.
if (B,<g) is another well-ordering with the property that B ¢ A, then (H(A),<m(a)) <
(Ba <B)'

OUTLINE: Denote by H(A) the quotient of WO(A) by the equivalence relation =, i.e.
H(A) =WO(A)/ ~. For (B,<p) € WO(A), let [(B,<p)] denote the ~-equivalence class
of (B,<p) in H(A). Define an ordering <4y on H(A) as follows:

[(B,<B)]<a@)[(C,<c)] <= (B,<p) < (C,<c),

for [(B,<p)], [(C,<c)] € H(A). Show that <z(a) is actually a well-ordering and verify

that (H(A),<p(a)) satisfies the conclusion of the theorem.
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5. (Present)
(a) Prove without using AC that for a cardinal k > w, |k x k| = K.

HINT: Define a well-ordering < of k x k (using the well-ordering of k) such that the
cardinality of every proper initial segment of (k x k,<3) is less than x (think of how
you would do it for k¥ = w). Conclude that tp(k x K, <s) < K.

(b) (AC) Conclude that if A, are sets of cardinality at most &, for a < &, then |Uq<, Aol <
k. Pinpoint exactly where you use AC.

(¢) (AC) Show that for any infinite cardinal s, k* is regular. In particular, w; is regular.

6. An open interval in wy is a set of the form (o, 8) ;== {yew; :a<y< B} or [0,a) =, for
some « < 3 < wy. The topology generated by open intervals is naturally called the open
interval topology.

(AC) Prove that the open interval topology on w; is sequentially compact (i.e. every
sequence has a convergent subsequence), but not compact (in the sense of open covers).

7. (Present) Let X be a second-countable topological space.

(a) Show that X has at most continuum many open subsets.

(b) Let a, B, denote ordinals. A sequence of sets (Ay)a<y is called monotone if it is either
increasing (i.e. o < = A, € Ag, for all o, f < y) or decreasing (i.e. o <= A, 2 Ag,
for all v, B < ); call it strictly monotone, if all of the inclusions are strict.

Prove that any strictly monotone sequence (U, )a< 0f open subsets of X has countable
length, i.e. 7 is countable.

HINT: Use the same idea as in the proof of (a).

(c) Show that every monotone sequence (U, )a<,, Open subsets of X eventually stabilizes,
i.e. there is v < w; such that for all o <w; with a >+, we have U, = U,.

HiNT: Use the regularity of w;.
(d) Conclude that parts (a), (b) and (c) are also true for closed sets.



