
DESCRIPTIVE SET THEORY

HOMEWORK 2

Due on Tuesday, Feb 11

1. (Present) Prove that Zermelo’s Theorem implies AC.

Caution: It is easy to accidentally use AC in your proof. Make sure you don’t.

2. (Present) Prove that AC implies Zorn’s Lemma.

Outline: Let (A,<) be as in the statement of Zorn’s Lemma and assume for contradiction
that no element is maximal. Then for every a ∈ A, the set succ(a) ∶= {b ∈ A ∶ a < b} is
nonempty. Thus, by AC, there is a function f ∶ A → A mapping each a to an element
in succ(a). Similarly, for every chain B ⊆ A, the set U(B) ∶= {a ∈ A ∶ ∀b ∈ B(b < a)}
is nonempty. Hence, denoting the set of all chains in A (including the empty set) by
Chains(A), AC provides a function g ∶ Chains(A) → A mapping each chain B to an
element in U(B). Obtain a contradiction by defining an injection of χ(A) into A using
transfinite induction: use f to define the successor cases and use g to define the 0 and
the limit cases.

Remark: Alternatively, by the same transfinite induction, one can obtain an injection
of ON into A, contradicting ON being a proper class.

3. (Present) Prove that Zorn’s Lemma implies Zermelo’s Theorem.

Hint: For a set A, consider (WO(A),≺), where WO(A) is as in the proof of Hartogs’
theorem in the notes.

4. Prove the following version of Hartogs’ theorem that doesn’t use Replacement axiom:

Theorem (Hartogs without Replacement). For every set A, there is a well-ordered set
(H(A),<H(A)) such that H(A) /⊑ A and (H(A),<H(A)) is ⪯-least such well-ordering, i.e.
if (B,<B) is another well-ordering with the property that B /⊑ A, then (H(A),<H(A)) ⪯
(B,<B).

Outline: Denote by H(A) the quotient of WO(A) by the equivalence relation ≃, i.e.
H(A) = WO(A)/ ≃. For (B,<B) ∈ WO(A), let [(B,<B)] denote the ≃-equivalence class
of (B,<B) in H(A). Define an ordering <H(A) on H(A) as follows:

[(B,<B)]<H(A)[(C,<C)] ⇐⇒ (B,<B) ≺ (C,<C),

for [(B,<B)], [(C,<C)] ∈ H(A). Show that <H(A) is actually a well-ordering and verify
that (H(A),<H(A)) satisfies the conclusion of the theorem.
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5. (Present)
(a) Prove without using AC that for a cardinal κ ≥ ω, ∣κ × κ∣ = κ.

Hint: Define a well-ordering <2 of κ × κ (using the well-ordering of κ) such that the
cardinality of every proper initial segment of (κ × κ,<2) is less than κ (think of how
you would do it for κ = ω). Conclude that tp(κ × κ,<2) ≤ κ.

(b) (AC) Conclude that if Aα are sets of cardinality at most κ, for α < κ, then ∣ ⋃α<κAα∣ ≤
κ. Pinpoint exactly where you use AC.

(c) (AC) Show that for any infinite cardinal κ, κ+ is regular. In particular, ω1 is regular.

6. An open interval in ω1 is a set of the form (α,β) ∶= {γ ∈ ω1 ∶ α < γ < β} or [0, α) ∶= α, for
some α < β < ω1. The topology generated by open intervals is naturally called the open
interval topology.

(AC) Prove that the open interval topology on ω1 is sequentially compact (i.e. every
sequence has a convergent subsequence), but not compact (in the sense of open covers).

7. (Present) Let X be a second-countable topological space.

(a) Show that X has at most continuum many open subsets.

(b) Let α,β, γ denote ordinals. A sequence of sets (Aα)α<γ is called monotone if it is either
increasing (i.e. α < β ⇒ Aα ⊆ Aβ, for all α,β < γ) or decreasing (i.e. α < β ⇒ Aα ⊇ Aβ,
for all α,β < γ); call it strictly monotone, if all of the inclusions are strict.

Prove that any strictly monotone sequence (Uα)α<γ of open subsets of X has countable
length, i.e. γ is countable.

Hint: Use the same idea as in the proof of (a).

(c) Show that every monotone sequence (Uα)α<ω1 open subsets of X eventually stabilizes,
i.e. there is γ < ω1 such that for all α < ω1 with α ≥ γ, we have Uα = Uγ.
Hint: Use the regularity of ω1.

(d) Conclude that parts (a), (b) and (c) are also true for closed sets.
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