DESCRIPTIVE SET THEORY

HOMEWORK 2

Due on Tuesday, Feb 11

1. (Present) Prove that Zermelo's Theorem implies AC.

CAUTION: It is easy to accidentally use AC in your proof. Make sure you don't.

2. (Present) Prove that AC implies Zorn's Lemma.

OUTLINE: Let (A, <) be as in the statement of Zorn's Lemma and assume for contradiction that no element is maximal. Then for every $a \in A$, the set $succ(a) := \{b \in A : a < b\}$ is nonempty. Thus, by AC, there is a function $f : A \to A$ mapping each a to an element in succ(a). Similarly, for every chain $B \subseteq A$, the set $U(B) := \{a \in A : \forall b \in B(b < a)\}$ is nonempty. Hence, denoting the set of all chains in A (including the empty set) by Chains(A), AC provides a function g : Chains $(A) \to A$ mapping each chain B to an element in U(B). Obtain a contradiction by defining an injection of $\chi(A)$ into A using transfinite induction: use f to define the successor cases and use g to define the 0 and the limit cases.

REMARK: Alternatively, by the same transfinite induction, one can obtain an injection of ON into A, contradicting ON being a proper class.

3. (Present) Prove that Zorn's Lemma implies Zermelo's Theorem.

HINT: For a set A, consider $(WO(A), \prec)$, where WO(A) is as in the proof of Hartogs' theorem in the notes.

4. Prove the following version of Hartogs' theorem that doesn't use Replacement axiom:

Theorem (Hartogs without Replacement). For every set A, there is a well-ordered set $(H(A), <_{H(A)})$ such that $H(A) \notin A$ and $(H(A), <_{H(A)})$ is \leq -least such well-ordering, i.e. if $(B, <_B)$ is another well-ordering with the property that $B \notin A$, then $(H(A), <_{H(A)}) \leq (B, <_B)$.

OUTLINE: Denote by H(A) the quotient of WO(A) by the equivalence relation \simeq , i.e. $H(A) = WO(A) / \simeq$. For $(B, <_B) \in WO(A)$, let $[(B, <_B)]$ denote the \simeq -equivalence class of $(B, <_B)$ in H(A). Define an ordering $<_{H(A)}$ on H(A) as follows:

$$[(B, <_B)] <_{H(A)} [(C, <_C)] \iff (B, <_B) < (C, <_C),$$

for $[(B, <_B)]$, $[(C, <_C)] \in H(A)$. Show that $<_{H(A)}$ is actually a well-ordering and verify that $(H(A), <_{H(A)})$ satisfies the conclusion of the theorem.

5. (Present)

(a) Prove without using AC that for a cardinal $\kappa \ge \omega$, $|\kappa \times \kappa| = \kappa$.

HINT: Define a well-ordering $<_2$ of $\kappa \times \kappa$ (using the well-ordering of κ) such that the cardinality of every proper initial segment of $(\kappa \times \kappa, <_2)$ is less than κ (think of how you would do it for $\kappa = \omega$). Conclude that $\operatorname{tp}(\kappa \times \kappa, <_2) \leq \kappa$.

- (b) (AC) Conclude that if A_{α} are sets of cardinality at most κ , for $\alpha < \kappa$, then $|\bigcup_{\alpha < \kappa} A_{\alpha}| \le \kappa$. Pinpoint exactly where you use AC.
- (c) (AC) Show that for any infinite cardinal κ , κ^+ is regular. In particular, ω_1 is regular.
- **6.** An open interval in ω_1 is a set of the form $(\alpha, \beta) \coloneqq \{\gamma \in \omega_1 : \alpha < \gamma < \beta\}$ or $[0, \alpha) \coloneqq \alpha$, for some $\alpha < \beta < \omega_1$. The topology generated by open intervals is naturally called the *open interval topology*.

(AC) Prove that the open interval topology on ω_1 is sequentially compact (i.e. every sequence has a convergent subsequence), but not compact (in the sense of open covers).

- 7. (Present) Let X be a second-countable topological space.
 - (a) Show that X has at most continuum many open subsets.
 - (b) Let α, β, γ denote ordinals. A sequence of sets $(A_{\alpha})_{\alpha < \gamma}$ is called *monotone* if it is either increasing (i.e. $\alpha < \beta \Rightarrow A_{\alpha} \subseteq A_{\beta}$, for all $\alpha, \beta < \gamma$) or decreasing (i.e. $\alpha < \beta \Rightarrow A_{\alpha} \supseteq A_{\beta}$, for all $\alpha, \beta < \gamma$); call it *strictly monotone*, if all of the inclusions are strict.

Prove that any strictly monotone sequence $(U_{\alpha})_{\alpha < \gamma}$ of open subsets of X has countable length, i.e. γ is countable.

HINT: Use the same idea as in the proof of (a).

(c) Show that every monotone sequence $(U_{\alpha})_{\alpha < \omega_1}$ open subsets of X eventually stabilizes, i.e. there is $\gamma < \omega_1$ such that for all $\alpha < \omega_1$ with $\alpha \ge \gamma$, we have $U_{\alpha} = U_{\gamma}$.

HINT: Use the regularity of ω_1 .

(d) Conclude that parts (a), (b) and (c) are also true for closed sets.