DESCRIPTIVE SET THEORY

HOMEWORK 12
Due on Tuesday, Apr 29

All problems below are to be presented.

1. Show that a countable topological group is Polish if and only if it is discrete.
2. Let $X_{0}=\left\{x \in 2^{\mathbb{N}}: \forall^{\infty} n x(n)=0\right\}, X_{1}=\left\{x \in 2^{\mathbb{N}}: \forall^{\infty} n x(n)=1\right\}$, and put $X=2^{\mathbb{N}} \backslash\left(X_{0} \cup X_{1}\right)$. Note that X_{0} and X_{1} are \mathbb{E}_{0}-classes, so all we did is throwing away from $2^{\mathbb{N}}$ two \mathbb{E}_{0}-classes. Define a continuous action of \mathbb{Z} on X so that the induced orbit equivalence relation $E_{\mathbb{Z}}$ is exactly $\mathbb{E}_{0} l_{X}$.
3. Show that $\mathbb{E}_{v} \sim_{B} \mathbb{E}_{0}$ by proving that $\mathbb{E}_{v} \sqsubseteq_{B} \mathbb{E}_{0}(\mathbb{N}) \sqsubseteq_{c} \mathbb{E}_{0}$ and $\mathbb{E}_{0} \sqsubseteq_{c} \mathbb{E}_{v}$.

Hint: Use that each $x \in \mathbb{R}$ can be uniquely written as

$$
x=\frac{a_{1}}{1!}+\frac{a_{2}}{2!}+\cdots+\frac{a_{n}}{n!}+\cdots,
$$

where $a_{1}=\lfloor x\rfloor$, for each $n \geq 2, a_{n} \in\{0,1, \ldots, n-1\}$ and $\exists^{\infty} n\left(a_{n} \neq n-1\right)$; the latter condition is to ensure uniqueness.
4. Let E be an equivalence relation on a Polish space X. Prove that $\operatorname{id}\left(2^{\mathbb{N}}\right) \leq_{B} E \operatorname{iff} \operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{B} E$ iff $\operatorname{id}\left(2^{\mathbb{N}}\right) \sqsubseteq_{c} E$.
5. Fill in the details in the proof of Mycielski's theorem; namely, given a meager equivalence relation E on a Polish space X, write $E=\bigcup_{n} F_{n}$, where F_{n} are increasing and nowhere dense, and construct a Cantor scheme $\left(U_{s}\right)_{s \in 2^{⿺ N}} \subseteq X$ of vanishing diameter (with respect to a fixed complete metric d for X) with the following properties:
(i) U_{s} is nonempty open, for each $s \in 2^{<\mathbb{N}}$;
(ii) $\overline{U_{s^{\wedge} i}} \subseteq U_{s}$, for each $s \in 2^{<\mathbb{N}}, i \in\{0,1\}$;
(iii) $\left(U_{s} \times U_{t}\right) \cap F_{n}=\varnothing$, for all distinct $s, t \in 2^{n}$ and $n \in \mathbb{N}$.
6. Let (X, \mathcal{T}) be a Polish space and let E be an equivalence relation on X. E is called smooth if $E \leq_{B} \operatorname{Id}(\mathbb{R}) .{ }^{1}$ For a family \mathcal{F} of subsets of X, we say that \mathcal{F} generates E if

$$
x E y \Longleftrightarrow \forall A \in \mathcal{F}(x \in A \Leftrightarrow y \in A) .
$$

Prove that the following are equivalent:
(1) E is smooth;
(2) There is a Polish topology $\mathcal{T}_{E} \supseteq \mathcal{T}$ on X (and hence automatically $\mathcal{B}\left(\mathcal{T}_{E}\right)=\mathcal{B}(\mathcal{T})$) such that E is closed in $\left(X^{2}, \mathcal{T}_{E}^{2}\right)$.
Caution: It is easy to make E closed in X^{2} by refining the topology of X^{2}, but here we have to refine the topology of X so that E becomes closed in X^{2}.
(3) E is generated by a countable Borel family $\mathcal{F} \subseteq \mathcal{B}(\mathcal{T})$.

Hint: For $(1) \Rightarrow(2)$, consider a Borel function witnessing the smoothness of E and make it continuous. For $(2) \Rightarrow(3)$, assuming that E is closed, write $X^{2} \backslash E=\cup_{n} U_{n} \times V_{n}$, with U_{n}, V_{n} basic open, and note that the saturations $\left[U_{n}\right]_{E}$ and $\left[V_{n}\right]_{E}$ are disjoint analytic sets; separate them by an invariant Borel set.

[^0]
[^0]: ${ }^{1}$ Note that by the Borel isomorphism theorem, \mathbb{R} can be replaced with any other uncountable Polish space.

