DESCRIPTIVE SET THEORY

HOMEWORK 12

Due on Tuesday, Apr 29

All problems below are to be presented.

- 1. Show that a countable topological group is Polish if and only if it is discrete.
- **2.** Let $X_0 = \{x \in 2^{\mathbb{N}} : \forall^{\infty} n \ x(n) = 0\}$, $X_1 = \{x \in 2^{\mathbb{N}} : \forall^{\infty} n \ x(n) = 1\}$, and put $X = 2^{\mathbb{N}} \setminus (X_0 \cup X_1)$. Note that X_0 and X_1 are \mathbb{E}_0 -classes, so all we did is throwing away from $2^{\mathbb{N}}$ two \mathbb{E}_0 -classes. Define a continuous action of \mathbb{Z} on X so that the induced orbit equivalence relation $E_{\mathbb{Z}}$ is exactly $\mathbb{E}_0 \downarrow_X$.
- **3.** Show that $\mathbb{E}_v \sim_B \mathbb{E}_0$ by proving that $\mathbb{E}_v \subseteq_B \mathbb{E}_0(\mathbb{N}) \subseteq_c \mathbb{E}_0$ and $\mathbb{E}_0 \subseteq_c \mathbb{E}_v$. HINT: Use that each $x \in \mathbb{R}$ can be uniquely written as

$$x = \frac{a_1}{1!} + \frac{a_2}{2!} + \dots + \frac{a_n}{n!} + \dots,$$

where $a_1 = \lfloor x \rfloor$, for each $n \ge 2$, $a_n \in \{0, 1, ..., n-1\}$ and $\exists^{\infty} n(a_n \ne n-1)$; the latter condition is to ensure uniqueness.

- 4. Let *E* be an equivalence relation on a Polish space *X*. Prove that $id(2^{\mathbb{N}}) \leq_B E$ iff $id(2^{\mathbb{N}}) \equiv_B E$ iff $id(2^{\mathbb{N}}) \equiv_c E$.
- 5. Fill in the details in the proof of Mycielski's theorem; namely, given a meager equivalence relation E on a Polish space X, write $E = \bigcup_n F_n$, where F_n are increasing and nowhere dense, and construct a Cantor scheme $(U_s)_{s \in 2^{<\mathbb{N}}} \subseteq X$ of vanishing diameter (with respect to a fixed complete metric d for X) with the following properties:
 - (i) U_s is nonempty open, for each $s \in 2^{<\mathbb{N}}$;
 - (ii) $\overline{U_{s^{i}}} \subseteq U_s$, for each $s \in 2^{<\mathbb{N}}$, $i \in \{0, 1\}$;
 - (iii) $(U_s \times U_t) \cap F_n = \emptyset$, for all distinct $s, t \in 2^n$ and $n \in \mathbb{N}$.
- 6. Let (X, \mathcal{T}) be a Polish space and let E be an equivalence relation on X. E is called *smooth* if $E \leq_B \mathrm{Id}(\mathbb{R})$.¹ For a family \mathcal{F} of subsets of X, we say that \mathcal{F} generates E if

$$xEy \iff \forall A \in \mathcal{F}(x \in A \Leftrightarrow y \in A).$$

Prove that the following are equivalent:

- (1) E is smooth;
- (2) There is a Polish topology $\mathcal{T}_E \supseteq \mathcal{T}$ on X (and hence automatically $\mathcal{B}(\mathcal{T}_E) = \mathcal{B}(\mathcal{T})$) such that E is closed in (X^2, \mathcal{T}_E^2) .

CAUTION: It is easy to make E closed in X^2 by refining the topology of X^2 , but here we have to refine the topology of X so that E becomes closed in X^2 .

(3) E is generated by a countable Borel family $\mathcal{F} \subseteq \mathcal{B}(\mathcal{T})$.

HINT: For $(1)\Rightarrow(2)$, consider a Borel function witnessing the smoothness of E and make it continuous. For $(2)\Rightarrow(3)$, assuming that E is closed, write $X^2 \\ E = \bigcup_n U_n \\ V_n$, with U_n, V_n basic open, and note that the saturations $[U_n]_E$ and $[V_n]_E$ are disjoint analytic sets; separate them by an invariant Borel set.

¹Note that by the Borel isomorphism theorem, \mathbb{R} can be replaced with any other uncountable Polish space.