DESCRIPTIVE SET THEORY

HOMEWORK 11
Due on Tuesday, Apr 22

All problems below are to be presented.

1. For a topological space X, show that $\mathrm{BP}(X)$ admits envelops: for a given $A \subseteq X$, first find a $\mathrm{BP}(X)$-envelop for it in terms of $U(\cdot)$, then write down explicitly what the set is.
2. Let X be a Polish space and let $\mathbf{C}(X)$ denote the smallest σ-algebra on X containing $\mathcal{B}(X)$ and closed under the operation \mathcal{A}.
(a) Show that $\sigma\left(\Sigma_{1}^{1}(X)\right) \subseteq \mathcal{A} \boldsymbol{\Pi}_{1}^{1}(X) \subseteq \mathbf{C}(X)$.

Hint: For $\sigma\left(\Sigma_{1}^{1}(X)\right) \subseteq \mathcal{A} \Pi_{1}^{1}(X)$, it is enough to show that $\mathcal{A} \Pi_{1}^{1}(X)$ is closed under countable unions and countable intersections. For countable unions, use the natural bijection $\mathbb{N}<\mathbb{N} \times \mathbb{N} \xrightarrow{\sim}$ $\mathbb{N}^{<\mathbb{N}} \backslash\{\varnothing\}$ given by $(n, s) \mapsto n^{\wedge} s$. For countable intersections, use the usual diagonal (snakelike) bijection $\mathbb{N}^{2} \xrightarrow{\sim} \mathbb{N}$ to monotonically encode finite sequences of elements of $\mathbb{N}^{<\mathbb{N}}$ into single elements of $\mathbb{N}<\mathbb{N}$.
(b) For each uncountable Polish space Y show that there is a Y-universal set for $\mathcal{A} \Pi_{1}^{1}(X)$.

Hint: Enough to prove for $Y=\mathcal{N}^{\mathbb{N}^{<N}}$ (why?). Start with a \mathcal{N}-universal set $F \subseteq \mathcal{N} \times X$ for $\Pi_{1}^{1}(X)$ and for each $s \in \mathbb{N}^{<\mathbb{N}}$, consider the set $P_{s} \subseteq \mathcal{N}^{\mathbb{N}^{\mathbb{N}}} \times X$ defined as follows: for $(y, x) \in \mathcal{N}^{\mathbb{N}^{\mathbb{N}}} \times X$, put $(y, x) \in P_{s}: \Leftrightarrow(y(s), x) \in F$.
(c) Conclude that for uncountable $X, \sigma\left(\Sigma_{1}^{1}(X)\right) \mp \mathcal{A} \Pi_{1}^{1}(X) \mp \mathbf{C}(X)$.
3. (Fun problem) Prove directly (without using Wadge's theorem or lemma) that any countable dense $Q \subseteq 2^{\mathbb{N}}$ is Σ_{2}^{0}-complete, by showing that player II has a winning strategy in the Wadge game $G_{W}(A, Q)$ for any $A \in \Sigma_{2}^{0}(\mathcal{N})$.
4. For a property $P \subseteq \mathbb{N}$ of natural numbers, we use the following abbreviations:

$$
\begin{aligned}
& \forall^{\infty} n P(n): \Leftrightarrow\{n \in \mathbb{N}: P(n)\} \text { is cofinite } \Leftrightarrow \text { for large enough } n, P(n) \text { holds } \\
& \exists^{\infty} n P(n): \Leftrightarrow\{n \in \mathbb{N}: P(n)\} \text { is infinite } \Leftrightarrow \text { for arbitrarily large } n, P(n) \text { holds }
\end{aligned}
$$

Show that the set $Q_{2}=\left\{x \in 2^{\mathbb{N}}: \forall^{\infty} n(x(n)=0)\right\}$ is Σ_{2}^{0}-complete and conclude that the set $N_{2}=\left\{x \in 2^{\mathbb{N}}: \exists \infty n(x(n)=0)\right\}$ is Π_{2}^{0}-complete.
5. Show that the following sets are Π_{3}^{0}-complete:
(a) $P_{3}=\left\{x \in 2^{\mathbb{N} \times \mathbb{N}}: \forall n \forall^{\infty} m(x(n, m)=0)\right\}$,

Hint: Use Q_{2} from the previous problem.
(b) $C_{3}=\left\{x \in \mathbb{N}^{\mathbb{N}}: \lim _{n} x(n)=\infty\right\}$.

Hint: Reduce P_{3} to C_{3}.
6. Each binary relation on \mathbb{N} is an element of $\operatorname{Pow}\left(\mathbb{N}^{2}\right)$, which we may identify with $2^{\mathbb{N}^{2}}$. Thus, we can define

$$
\begin{aligned}
\mathrm{LO} & =\left\{x \in 2^{\mathbb{N}^{2}}: x \text { is a linear ordering }\right\} \\
\mathrm{WO} & =\left\{x \in 2^{\mathbb{N}^{2}}: x \text { is a well-ordering }\right\} .
\end{aligned}
$$

(a) Show that LO is a closed subset of $2^{\mathbb{N}^{2}}$ and that WO is co-analytic.
(b) Prove that WO is actually Π_{1}^{1}-complete.

Hint: Define an appropriate ordering on a tree to show that $\mathrm{WF} \leq_{W} \mathrm{WO}$, where $\mathrm{WF}=\operatorname{Tr} \backslash \mathrm{IF}$.

