DESCRIPTIVE SET THEORY

HOMEWORK 11

Due on Tuesday, Apr 22

All problems below are to be presented.

- **1.** For a topological space X, show that BP(X) admits envelops: for a given $A \subseteq X$, first find a BP(X)-envelop for it in terms of $U(\cdot)$, then write down explicitly what the set is.
- 2. Let X be a Polish space and let C(X) denote the smallest σ -algebra on X containing $\mathcal{B}(X)$ and closed under the operation \mathcal{A} .
 - (a) Show that $\sigma(\Sigma_1^1(X)) \subseteq \mathcal{A}\Pi_1^1(X) \subseteq \mathbb{C}(X)$.

HINT: For $\sigma(\Sigma_1^1(X)) \subseteq \mathcal{A}\Pi_1^1(X)$, it is enough to show that $\mathcal{A}\Pi_1^1(X)$ is closed under countable unions and countable intersections. For countable unions, use the natural bijection $\mathbb{N}^{<\mathbb{N}} \times \mathbb{N} \xrightarrow{\sim} \mathbb{N}^{<\mathbb{N}} \setminus \{\emptyset\}$ given by $(n, s) \mapsto n^{\sim} s$. For countable intersections, use the usual diagonal (snakelike) bijection $\mathbb{N}^2 \xrightarrow{\sim} \mathbb{N}$ to monotonically encode finite sequences of elements of $\mathbb{N}^{<\mathbb{N}}$ into single elements of $\mathbb{N}^{<\mathbb{N}}$.

(b) For each uncountable Polish space Y show that there is a Y-universal set for $\mathcal{A}\Pi_1^1(X)$.

HINT: Enough to prove for $Y = \mathcal{N}^{\mathbb{N}^{<\mathbb{N}}}$ (why?). Start with a \mathcal{N} -universal set $F \subseteq \mathcal{N} \times X$ for $\Pi_1^1(X)$ and for each $s \in \mathbb{N}^{<\mathbb{N}}$, consider the set $P_s \subseteq \mathcal{N}^{\mathbb{N}^{<\mathbb{N}}} \times X$ defined as follows: for $(y,x) \in \mathcal{N}^{\mathbb{N}^{<\mathbb{N}}} \times X$, put $(y,x) \in P_s :\Leftrightarrow (y(s),x) \in F$.

- (c) Conclude that for uncountable X, $\sigma(\Sigma_1^1(X)) \not\subseteq \mathcal{A}\Pi_1^1(X) \not\subseteq \mathbf{C}(X)$.
- **3.** (Fun problem) Prove directly (without using Wadge's theorem or lemma) that any countable dense $Q \subseteq 2^{\mathbb{N}}$ is Σ_2^0 -complete, by showing that player II has a winning strategy in the Wadge game $G_W(A, Q)$ for any $A \in \Sigma_2^0(\mathcal{N})$.
- 4. For a property $P \subseteq \mathbb{N}$ of natural numbers, we use the following abbreviations:

 $\forall^{\infty} n P(n) \iff \{n \in \mathbb{N} : P(n)\} \text{ is cofinite } \Leftrightarrow \text{ for large enough } n, P(n) \text{ holds} \\ \exists^{\infty} n P(n) \iff \{n \in \mathbb{N} : P(n)\} \text{ is infinite } \Leftrightarrow \text{ for arbitrarily large } n, P(n) \text{ holds}$

Show that the set $Q_2 = \{x \in 2^{\mathbb{N}} : \forall^{\infty} n(x(n) = 0)\}$ is Σ_2^0 -complete and conclude that the set $N_2 = \{x \in 2^{\mathbb{N}} : \exists^{\infty} n(x(n) = 0)\}$ is Π_2^0 -complete.

- **5.** Show that the following sets are Π_3^0 -complete:
 - (a) $P_3 = \{x \in 2^{\mathbb{N} \times \mathbb{N}} : \forall n \forall^{\infty} m(x(n,m) = 0)\},$ HINT: Use Q_2 from the previous problem.
 - (b) $C_3 = \{x \in \mathbb{N}^{\mathbb{N}} : \lim_n x(n) = \infty\}.$ HINT: Reduce P_3 to C_3 .
- 6. Each binary relation on \mathbb{N} is an element of $Pow(\mathbb{N}^2)$, which we may identify with $2^{\mathbb{N}^2}$. Thus, we can define

LO = { $x \in 2^{\mathbb{N}^2} : x$ is a linear ordering} WO = { $x \in 2^{\mathbb{N}^2} : x$ is a well-ordering}.

- (a) Show that LO is a closed subset of $2^{\mathbb{N}^2}$ and that WO is co-analytic.
- (b) Prove that WO is actually Π_1^1 -complete. HINT: Define an appropriate ordering on a tree to show that WF \leq_W WO, where WF = Tr \IF.