DESCRIPTIVE SET THEORY

HOMEWORK 10

Due on Tuesday, Apr 15

All problems below are to be presented.

- **1.** Let X be set and let $\mathcal{T}, \mathcal{T}'$ be Polish topologies on X such that $T \subseteq \mathcal{B}(T')$ (for example, this would hold if $T \subseteq T'$). Show that $\mathcal{B}(\mathcal{T}) = \mathcal{B}(\mathcal{T}')$.
- 2. Prove the following characterization of Borel sets: A subset B of a Polish space X is Borel iff it is an injective continuous image of a closed subset of \mathcal{N} . (Even though I mentioned this statement in class, it is still instructive to go over the argument once again by yourself.)
- **3.** Prove that any standard Borel space (X, \mathcal{S}) admits a Borel linear ordering, i.e. there is a linear ordering < of X such that < is Borel as a subset of X^2 (with respect to the product σ -algebra).
- **4.** Let X be Polish and consider the coding map $c: F(X) \to 2^{\mathbb{N}}$ defined by $F \mapsto$ the characteristic function of $\{n \in \mathbb{N} : F \cap U_n \neq \emptyset\}$. Prove that for $x \in 2^{\mathbb{N}}, x \in c(F(X))$ if and only if

$$\forall U_n \subseteq U_m[x(n) = 1 \to x(m) = 1]$$

and

 $\forall U_n \forall \epsilon \in \mathbb{Q}^+[x(n) = 1 \to (\exists m, \text{ with } \overline{U_m} \subseteq U_n \text{ and } \operatorname{diam}(U_m) < \epsilon) \ x(m) = 1].$

Conclude that c(F(X)) is a G_{δ} subset of $2^{\mathbb{N}}$ and hence the Effros space F(X) is standard Borel.

- 5. Let X be a Polish space. A function $s: F(X) \to X$ is called a selector if $s(F) \in F$ for every nonempty $F \in F(X)$. The goal of this problem is to show that for every Polish space X, the Effros Borel space F(X) admits a Borel selector.
 - (a) Show that $F(\mathcal{N})$ admits a Borel selector.
 - (b) Show that there is a continuous open surjection $g: \mathcal{N} \to X$ by constructing a scheme $(U_s)_{s \in \mathbb{N}^{<\mathbb{N}}}$ of open sets such that $U_{\emptyset} = X$, $\overline{U}_{s^{\uparrow}i} \subseteq U_s$, $U_s = \bigcup_i U_{s^{\uparrow}i}$ and $\operatorname{diam}(U_s) < 2^{-|s|}$. CAUTION: We don't require $U_{s^{\uparrow}i} \cap U_{s^{\uparrow}j} = \emptyset$ for $i \neq j$ (which makes your life easy), so the associated map q may not be injective.
 - (c) Prove that the map $f: F(X) \to F(\mathcal{N})$ defined by $F \mapsto g^{-1}(F)$ is Borel.
 - (d) Conclude that F(X) admits a Borel selector.
- **6.** Let X, Y be Polish spaces and let $f: X \to Y$ be a continuous function such that f(X) is uncountable. Put

$$\mathcal{K}_f(X) = \{ K \in K(X) : f \downarrow_K \text{ is injective} \},\$$

and note that for $K \in K(X)$,

$$K \in \mathcal{K}_f(X) \iff \forall U_1, U_2 \in \mathcal{U} \text{ with } \overline{U_1} \cap \overline{U_2} = \varnothing[f(\overline{U_1} \cap K) \cap f(\overline{U_2} \cap K) = \varnothing].$$

Next, show that for fixed $U_1, U_2 \in \mathcal{U}$ with $\overline{U_1} \cap \overline{U_2} = \emptyset$ the set $\mathcal{V} = \{ K \in K(X) : f(\overline{U_1} \cap K) \cap f(\overline{U_2} \cap K) = \emptyset \}$

is open in K(X), and hence $\mathcal{K}_f(X)$ is G_{δ} .

7. Let X be a Polish space, $F \subseteq X \times \mathcal{N}$ and $A = \operatorname{proj}_X(F)$. Show that if Player II has a winning strategy in the unfolded Banach-Mazur game $G^{**}(F, X)$, then A is meager.