DESCRIPTIVE SET THEORY

HOMEWORK 1

Due on Tuesday, Feb 4

- **1.** Let x, y, A, B be sets.
 - (a) Show that $\{x\}$ is a set.
 - (b) Show that $(x, y) \coloneqq \{\{x\}, \{x, y\}\}$ is a set and write a formula $\phi(z)$ that holds if and only if z is an ordered pair. Moreover, write formulas $\phi_0(z, x)$ and $\phi_1(z, y)$ such that $\phi_0(z, x)$ and $\phi_1(z, y)$ hold if and only if z = (x, y). In other words, ϕ_0 defines the function $z \mapsto x$ and ϕ_1 defines the function $z \mapsto y$.
 - (c) Show that $A \times B := \{(x, y) : x \in A \land y \in B\}$ is a set.
 - (d) Define the notion of a function $f : A \to B$ as a certain subset of $A \times B$, i.e. write down which sets are called functions from A to B.
- 2. (Present) Finish the proof of Lemma 2.6.
- **3.** (Present) Show that the powerset of a transitive set is transitive.¹
- 4. (Present) Prove part (c) of Lemma 3.3 and part (a) of Lemma 3.4. Do not use any of the later parts of Lemmas 3.4 and 3.5 in your proofs.
- 5. Prove that there does NOT exist a set that contains all of the ordinals.
- **6.** Prove Lemma 3.11.
- 7. (Present) Prove Proposition 5.4.
- **8.** (Present) Prove that $\mathbb{N} \equiv \mathbb{Z} \equiv \mathbb{Q}$.
- **9.** (Present) Prove that $\mathbb{R} \equiv (0,1) \equiv [0,1] \equiv 2^{\mathbb{N}} \equiv \text{Pow}(\mathbb{N})$.

¹Thanks to Travis Nell for suggesting this exercise.