
FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS

ANUSH TSERUNYAN

Contents

1. Introduction 3
2. First order logic 3
2.A. Structures 3
2.B. Language and interpretation 7
2.C. Definability 11
2.D. Theories and models 12
2.E. Elementarity 14
2.F. Formal proofs 16
3. Completeness of FOL and its consequences 18
3.A. Syntactic-semantic duality, completeness and compactness 18
3.B. Henkin’s proof of Gödel’s Completeness Theorem 21
3.C. The Skolem “paradox” 24
3.D. Elementary diagrams and the upward Löwenheim-Skolem theorem 25
3.E. Nonstandard models of arithmetic 25
3.F. Applications to combinatorics 26
4. Complete theories 27
4.A. The Loś-Vaught test 27
4.B. Algebraically closed fields and the Lefschetz Principle 28
4.C. Reducts of arithmetic 29
5. Incomplete theories 31
5.A. Sketch of proof of the Incompleteness theorem 31
5.B. A quick introduction to recursion theory 33
5.C. Representability in Robinson’s system Q 39
5.D. Gödel coding 43
5.E. The First Incompleteness Theorem (Rosser’s form) 44
5.F. The Second Incompleteness Theorem and Löb’s theorem 47
6. Undecidable theories 48
6.A. Σ0

1 sets and Kleene’s theorem 49
6.B. Universal Σ0

1 relation and Church’s theorem 50
7. Decidable theories and quantifier elimination 52
7.A. A criterion for quantifier elimination 53
7.B. Quantifier elimination for ACF 54
7.C. Model completeness and Hilbert’s Nullstellensatz 55

These notes owe a great deal to [Mos08] and [vdD10]; in fact, some parts are almost literally copied from
them. I also used my handwritten lecture notes from Matthias Aschenbrenner’s model theory course taught
at UCLA, as well as [Mar02] and [End01].

1

2 ANUSH TSERUNYAN

References 57

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 3

1. Introduction

At the beginning of the 20th century mathematics experienced a crisis due to the discovery
of certain paradoxes (e.g. Russell’s paradox) in previous attempts to formalize abstract
notions of sets and functions. To put analysis on a firm foundation, similar to the axiomatic
foundation for geometry, Hilbert proposed a program aimed at a direct consistency proof of
analysis. This would involve a system of axioms that is consistent, meaning free of internal
contradictions, and complete, meaning rich enough to prove all true statements. But the
search for such a system was doomed to fail: Gödel proved in the early 1930s that any system
of axioms that can be listed by some computable process, and subsumes Peano arithmetic,
is either incomplete or inconsistent. This is the Gödel Incompleteness Theorem, and we will
prove it in the second half of this course. In the first half, we will develop the framework of
First Order Logic (FOL), culminating in a proof of the Completeness theorem, yet another
foundational theorem by Gödel. From this we will derive the Compactness theorem, which
is one of the most useful tools of logic. In addition, we will discuss applications in various
fields of mathematics such as combinatorics and algebra.

2. First order logic

Like any other field of mathematics, mathematical logic starts with a pile of definitions,
the importance and use of which will become apparent as we go. Right now, our position is
analogous to that of an instructor of geometry who has to define the concept of a differential
manifold from scratch without assuming knowledge of point set topology and differentiability.
So one has to patiently make his way through the definitions keeping in mind that the end
goal is worth it. Let the story begin...

2.A. Structures

Every mathematician recognizes a mathematical structure as such when he sees it. Here are
some

Examples 2.1.

(a) A graph is a pair Γ = (Γ,E), where Γ ≠ ∅ is the set of nodes and E is a binary relation
on Γ, i.e. E ⊆ Γ2.

(b) A partial ordering is a pair P = (P,≤), where P is a set and ≤ is a binary relation on it
satisfying the following conditions:

(i) (Reflexivity) ∀x ∈ P , x ≤ x,
(ii) (Antisymmetry) ∀x, y ∈ P , if x ≤ y and y ≤ x, then x = y,

(iii) (Transitivity) ∀x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z.

(c) A group is a triple G = (G,1, ⋅), where G is a set, 1 is a fixed element of G (a constant)
and ⋅ is a binary operation on G such that the following conditions hold:

(i) (Associativity) ∀x, y, z ∈ G, x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z,
(ii) (Identity) ∀x ∈ G, 1 ⋅ x = x ⋅ 1 = x,
(iii) (Inverse) ∀x ∈ G ∃y ∈ G, xy = 1.

4 ANUSH TSERUNYAN

(d) An ordered field is a 6-tuple F = (F,0,1,+, ⋅,<), where F is a set, 0,1 are some fixed
elements of F , + and ⋅ are binary operations, and < is a binary relation on F such that
certain conditions are satisfied (too many to list here).

What is common between these examples? Well, they all have an underlying set together
with either relations, operations or constant elements (or all of the above as in example (d))
defined on it. Let’s formalize this and give an abstract definition of a mathematical structure.

Definition 2.2. A structure is a quadruple S = (S,C,F ,R), where S is a set, C is a set
of elements from S (constants), F is a set of operations on S (i.e. each element of F is
a function from Sn to S for some n ≥ 1) and R is a set of relations on S (not necessarily
binary).

Although this definition covers all of the examples above, it is a bit awkward to use when
defining a class of structures that have the same “types” of constants, functions and relations.
It gets even worse when the structures in that class must also satisfy certain axioms. For
example, in trying to define the class of groups, we not only have to demand that in those
structures C and F are singletons, R = ∅ and the operation in F is binary, but we also
have to make sure that the conditions (i)-(iii) of Example 2.1(c) are satisfied. To write these
conditions down, we need a coherent system of naming the constants, functions and relations
in these structures, i.e. we have to specify that 1 refers to the unique element in C and ⋅
refers to the unique element in F . So why don’t we first fix a set of names (like {1, ⋅}) and
then include their correspondence with the actual constants, functions and relations in the
definition of a structure? In fact, that is exactly what we will do.

Definition 2.3. A signature is a quadruple

τ = (C,F ,R, a),

where C,F ,R are pairwise disjoint sets (of symbols), which we refer to as the sets of constant,
relation and function symbols, respectively, and

a ∶ F ∪R → N>0.

(Here N>0 denotes the set of positive natural numbers because in logic N includes 0.)

A relation or function symbol P (i.e. an element of F ∪R) is said to be n-ary if a(P) = n.
The sets C,F ,R should be thought of as names for constant elements, relations and functions
(operations), and not the actual constant elements, relations and functions themselves! It is
also good to keep in mind that any of the sets C,F ,R can be empty.

Examples 2.4.

(a) The signature for graphs is

τgraphs = (∅,∅,{E}, (E ↦ 2)),

However, this is too formal and hard to read, so in order to avoid headache (think of a
signature for ordered fields!) we simply write

τgraph = (E),

and then specify that E is a binary relation symbol.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 5

(b) The signature for groups (or monoids) is

τgroup = (1, ⋅),

where ⋅ is a binary function symbol and 1 is a constant symbol.

(c) The signature for rings is

τring = (0,1,+,−, ⋅),

where +,−, ⋅ are binary function symbols and 0,1 are constant symbols.

(d) The signature for arithmetic is

τa = (0, S,+, ⋅),

where 0 is a constant symbol, S is a unary function symbol (S stands for “successor”),
and +, ⋅ are binary function symbols.

(e) The signature for sets is

τset = (∈),

where ∈ is a binary relation symbol.

Although in this examples the signatures are finite, it is not required by the definition.
Now we are ready to define a structure in a given signature τ = (C,R,F).

Definition 2.5. A τ -structure is a pair S = (S, i), where S is a set and i is a map (corre-
spondence) that assigns

● to each constant symbol c in τ a member i(c) of S;
● to each n-ary relation symbol R in τ an n-ary function i(R) ⊆ Sn;
● to each n-ary function symbol f in τ an n-ary function i(f) ∶ Sn → S.

We call S the universe of the structure S. The choice of the letter i is because we think
of i as the interpretation of the symbols of τ in the structure S. To simplify the notation,
we write qS instead of i(q), for all symbols q in τ , and so instead of (S, i), we write

S = (S,{cS}c∈C ,{RS}R∈R,{fS}f∈F).

For finite signatures, we use an even simpler notation as in the following examples.

Examples 2.6.

(a) A complete graph on n vertices is a τgraphs-structure

Kn = (Γ,EKn),

where Γ is a set of n elements and EKn = Γ2.

(b) Z as a group is a τgroup-structure

Z = (Z,1Z, ⋅Z),

where 1Z is 0 ∈ Z and ⋅Z is the usual addition operation.

(c) Here is a useless τring-structure:

Rcrazy = (R,0Rcrazy ,1Rcrazy ,+Rcrazy ,−Rcrazy , ⋅Rcrazy),

6 ANUSH TSERUNYAN

where 0Rcrazy ,1Rcrazy are equal to π, +Rcrazy is the sin(x + y) function, −Rcrazy is the x + y
function and ⋅Rcrazy is the x+4y function. Clearly Rcrazy is far from being a ring although
it is a structure in the signature of rings.

(d) R as a field is a τring-structure:

R = (R,0R,1R,+R,−R, ⋅R),

where all of the symbols are interpreted in the usual way.

(e) The structure of natural numbers as a τa-structure will be the central object of this
course:

N = (N,0N, SN,+N, ⋅N),

where 0N,+N, ⋅N are defined in the usual way, and SN is the successor operation (i.e.
the unary function of adding 1).

Since it is annoying to keep writing S in the superscript to denote the interpretation of
symbols of τ in a τ -structure S, we omit it as long as it is clear from the context that we mean
the interpretations rather than the symbols. For example, we will write N = (N,0, S,+, ⋅)
instead of N = (N,0N, SN,+N, ⋅N).

In algebra, one of the first things you learn after the definition of a group is the definition
of a subgroup, homomorphism and isomorphism. We do the same with arbitrary structures.

Definition 2.7. For τ -structures A,B, we say that A is a substructure of B and write A ⊆ B
if A ⊆ B and the interpretations of τ by A and B coincide on A, more precisely:

● cA = cB, for any constant symbol c in τ ,
● fA = fB ⇂An for any n-ary function symbol f in τ , i.e. fA(a⃗) = fB(a⃗) for all a⃗ ∈ An,
● RA = RB ∩ An for any n-ary relation symbol R in τ , i.e. RA(a⃗) ⇔ RB(a⃗) for all
a⃗ ∈ An.

For example, (N,0,+) is a substructure of (Z,0,+), Z = (Z,0,1,+, ⋅) is a substructure of
R = (R,0,1,+, ⋅). If τ only contains relation symbols, then any subset is (a universe of) a
substructure. For example, if (Γ,E) is a graph and ∆ ⊆ Γ, then (∆,E∩∆2), i.e. the induced
subgraph on ∆, is a substructure of (Γ,E). However, note that being a subgraph is not
the same as being a substructure of a graph: indeed, a subgraph of a graph (Γ,E) can be
missing some edges between vertices it contains even though these edges may be present in
E and this kind of subgraph isn’t a substructure of (Γ,E).

Note that the intersection of substructures of the same structure is again a substructure.
Let B be a τ -structure and S ⊆ B. The substructure generated by S is the smallest substruc-
ture containing S, i.e. it is the intersection of all substructures of B that contain S. We
denote this fact by A = ⟨S⟩B. Note that the universe of ⟨S⟩B is obtained from S by throwing
in the constants of B and closing it under the functions B. For example, the substructure
of R = (R,0,1,+, ⋅) generated by ∅ is (N,0,1,+, ⋅) (why?).

For a τ -structure B and A ⊆ B, we say that A is a universe of a substructure of B if
the universe of ⟨A⟩B is A (in other words, A already contains all of the constants of B and
is closed under the functions of B). For example, if τ only has relation symbols, then any
subset A ⊆ B is a universe of a substructure.

Definition 2.8. Let A,B be τ -structures. A function h ∶ A→ B is called a τ -homomorphism
(or just homomorphism) if h respects the interpretation of τ , more precisely:

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 7

● h(cA) = cB, for any constant symbol c in τ ,
● h(fA(a⃗)) = fB(h(a⃗)), for any n-ary function symbol f in τ and for all a⃗ ∈ An,
● RA(a⃗)⇒ RB(h(a⃗)), for any n-ary relation symbol R in τ and for all a⃗ ∈ An,

where for a⃗ = (a1, ..., an), h(a⃗) ∶= (h(a1), ..., h(an)). Denote this by h ∶ A→ B.

Note that in this definition, we only require ⇒ for relations. This asymmetry is justified
by the fact that if we look at the graphs of functions fA and fB as (n + 1)-ary relations
RA
f and RB

f , then, putting b = fA(a⃗), the condition h(fA(a⃗)) = fB(h(a⃗)) is equivalent to

RA
f (a⃗, b)⇒ RB

f (h(a⃗), h(b)).

It is straightforward to verify that for h ∶ A → B, h(A) is a universe of a substructure of
B.

Definition 2.9. Let A,B be τ -structures. A function h ∶ A → B is called a τ -isomorphism
(or just isomorphism) if h is bijective and both h and h−1 are τ -homomorphisms; in this case
we write h ∶ A ∼Ð→ B. The structures A,B are called isomorphic if there is an isomorphism
between them; denote this by A ≃ B.

Definition 2.10. Let A,B be τ -structures and h ∶ A → B. Recalling that h(A) is the
universe of ⟨h(A)⟩B, call h a τ -embedding (or just embedding) if h is an isomorphism between
A and ⟨h(A)⟩B. We denote this by h ∶ A↪ B.

Note that if A ⊆ B then the inclusion map is an embedding. This wouldn’t be true if in
the definition of substructure we had ⇒ for relations instead of ⇔.

Sometimes in algebra we consider the universe of a ring as an abelian group under addition,
in other words, we “forget” the multiplication operation. We make this precise here.

Definition 2.11. Let τ, τ ′ be signatures with τ ⊆ τ ′, let A be a τ -structure and B be a
τ ′-structure. We say that A is a reduct of B (or B an expansion of A) and write A = B⇂τ
if A and B have the same underlying set and the same interpretations of the symbols of τ .

For example, (R,0,+) is a reduct of (R,0,1,+, ⋅), which in its turn is a reduct of (R,0,1,+,
⋅,<).

2.B. Language and interpretation

Now we have to define the language of the First Order Logic (FOL) that will allow us to
express statements about τ -structures, like axioms (i)-(iii) in Example 2.1(c). Although the
definitions below are very natural, they are somewhat annoying to write and even to read.
The readers are advised to try to come up with the definitions themselves before (instead
of?) reading.

Let τ denote a signature for the rest of the section.

Definition 2.12. The alphabet FOL(τ) of the first order language in the signature τ com-
prises of the symbols in τ and the following additional symbols:

● logical symbols = ¬ ∧ ∨ → ∀ ∃
● punctuation symbols , ()
● variables v0, v1, v2, ...

Words in FOL(τ) are finite sequences of symbols from FOL(τ).

8 ANUSH TSERUNYAN

Definition 2.13. A τ -term (or a term in FOL(τ)) is a word formed by the following recursive
rules:

(i) each constant symbol is a term;
(ii) each variable is a term;
(iii) if t1, ..., tn are terms and f ∈ τ is an n-ary function symbol, then f(t1, ..., tn) is a term.

Examples 2.14.

(a) (v0 ⋅1) ⋅v3 is a term in FOL(τgroup). Note that the way this term is written is technically
incorrect, we should have written ⋅(⋅(v0,1), v3), but the latter is almost impossible to
read, so we will keep abusing notation and write the former way.

(b) S(0 + v2) + S(S(S(v2))) is a term in FOL(τa) (the language of arithmetic).

(c) Variables v0, v1, ... are the only terms in FOL(τgraph).

We also often use letters different than v0, v1, ... to denote variables, e.g. v, u, x, y, z.

Definition 2.15 (Interpretation of terms). Let M be a τ -structure and t be a τ -term build
using variables from v⃗ = (v1, ..., vn). We define the interpretation of t(v⃗) in M as a function
tM ∶Mn →M by induction on the construction of t as follows: for a⃗ = (a1, ..., an) ∈Mn,

(i) if t = c, where c is a constant symbol in τ , then tM(a⃗) = cM;
(ii) if t = vi, then tM(a⃗) = ai;
(iii) if t = f(t1, ..., tk), where t1, ..., tk are terms and f is an k-ary function symbol in τ , then

tM(a⃗) = fM(tM1 (a⃗), ..., tMk (a⃗)).

So one should think of the term t(v⃗) as a name of the function tM. Note that if t = v1,
then t(v1) is interpreted as a unary function, while t(v1, v2) as a binary function (although
it does not depend on v2). This is exactly what we do with polynomials for example: we
write p(x, y) = x2 + 1 to mean that this is a polynomial in two variables x and y although it
doesn’t depend on y.

Definition 2.16. A τ -formula (or a formula in FOL(τ)) is a word formed by the following
recursive rules:

(i) if s, t are terms then s = t is a formula;
(ii) if t1, ..., tn are terms and R ∈ τ is an n-ary relation symbol, then R(t1, ..., tn) is a formula;
(iii) if φ and ψ are formulas then ¬(φ), (φ) ∧ (ψ), (φ) ∨ (ψ), (φ) → (ψ), ∀vφ, ∃vφ are

formulas.

The formulas in the first two cases of the definition are called atomic. Also, if a formula
is formed without the last case, then it does not have any quantifiers, so we call it quantifier
free (or q.f. for short).

According to this definition, (∀x(x = y)) ∧ (x ≠ z) is a valid formula (in any signature),
although the third occurrence of x has nothing to do with its first two occurrences, where
x is used as the variable of the quantifier. The use of x as the variable for the quantifier is
a bad idea because it makes reading of the formula hard and confusing. (Imagine writing

x ∫
1

0 xdx instead of x ∫
1

0 tdt in a calculus course!) Thus we make a convention to not use
such bad notation.

Convention 2.17. We say that the variable v is quantified in the formula φ if ∀vψ or ∃vψ,
for some formula ψ, occurs in some stage of the recursive construction of φ. We make the

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 9

convention that each variable v can be used with a quantifier only once (∀vψ or ∃vψ occurs
at most once) and in this case v is not allowed to be used elsewhere other than in ψ.

This convention makes things like (∀x(x = y)) ∧ (x ≠ z) invalid, and one should write
(∀t(t = y)) ∧ (x ≠ z) instead.

A variable v is free in a formula φ if it occurs in φ and is not quantified. A formula without
free variables is called a sentence. Note that all statements (theorems, conjectures, etc.) in
mathematics are sentences (in the language of set theory).

We interpret formulas in a given structure M as n-ary relations on M , for some M , or,
equivalently, as functions from Mn to {true, false}. Just like we did with terms, we define
interpretation for φ(v⃗) (as opposed to just φ), for a vector of variables v⃗ = (v1, ..., vn), as
long as the free variables of φ are among v1, ..., vn and none of v1, ..., vn is quantified in φ.

Definition 2.18 (Interpretation of formulas). Let M be a τ -structure, φ a τ -formula and
let v⃗ be as above. For a⃗ = (a1, ...an) ∈Mn, we define the relation M ⊧ φ(a⃗) by induction on
the construction of φ as follows:

(i) if φ is t1 = t2, then M ⊧ φ(a⃗) if tM1 (a⃗) = tM2 (a⃗);
(ii) if φ is R(t1, ..., tk), then M ⊧ φ(a⃗) if RM(tM1 (a⃗), ..., tMk (a⃗)), i.e. (tM1 (a⃗), ..., tMk (a⃗)) ∈ RM;
(iii) if φ is ¬ψ, then M ⊧ φ(a⃗) if M ⊭ φ(a⃗);
(iv) if φ is ψ ∧ θ, then M ⊧ φ(a⃗) if M ⊧ ψ(a⃗) and M ⊧ θ(a⃗);
(v) if φ is ψ ∨ θ, then M ⊧ φ(a⃗) if M ⊧ ψ(a⃗) or M ⊧ θ(a⃗);
(vi) if φ is ∀uψ(v⃗, u) (hence u is not in v⃗ by our assumption), then M ⊧ φ(a⃗) if for all

b ∈M , M ⊧ ψ(a⃗, b);
(vii) if φ is ∃uψ(v⃗, u), then M ⊧ φ(a⃗) if there exists b ∈M , M ⊧ ψ(a⃗, b).

We read M ⊧ φ(a⃗) as φ is true (holds) about a⃗ in M. Note that the above definition
applies when φ is a sentence and n = 0. In this case, we read M ⊧ φ as φ is true/valid (holds)
in M. For a vector of variables v⃗ = (v1, ..., vn), we say that a formula φ(v⃗) is valid in M and
write M ⊧ φ(v⃗) if M ⊧ ∀v⃗φ(v⃗), where ∀v⃗ abbreviates ∀v1∀v2...∀vn.

Note that some of the logical symbols we use are redundant: we could restrict to using
only ¬,∨,∃ and the rest would be expressible in terms of these. So what we usually do is
the following: we use all of the symbols when it is convenient, but in our inductive proofs
we only take care of the cases with ¬,∨,∃ or ¬,∧,∀ or other equivalent combinations.

Examples 2.19.

(a) N ⊧ S(S(0)) = 2.

(b) Let Nexp = (N,0, S,+, ⋅, exp), where 0, S,+, ⋅ are interpreted as usual and exp is the binary
exponentiation function: exp(n,m) = nm for nonzero n and exp(0,m) = 0. Thanks to A.
Wiles, we now know that Nexp ⊧ ∀n∀x∀y∀z[(n ≥ 3∧exp(x,n)+exp(y, n) = exp(z, n))→
(x = 0 ∨ y = 0)], where n ≥ 3 stands for n ≠ 0 ∧ n ≠ S(0) ∧ n ≠ S(S(0)).

(c) R ⊧ ∃y(a = y ⋅ y) holds for all non-negative a ∈ R.

Lemma 2.20. Let A,B be two τ -structures. If h ∶ A→ B is a homomorphism, then for any
term t(v⃗) and a⃗ ∈ An,

h(tA(a⃗)) = tB(h(a⃗)),

where h(a⃗) = (h(a1), ..., h(an)).

10 ANUSH TSERUNYAN

Proof. We prove by induction on the construction (length) of t.

● If t = c, for a constant symbol c in τ , then tA(a⃗) = cA and hence we have

h(tA(a⃗)) = h(cA) = cB = tB(h(a⃗))

because h is a homomorphism.
● If t = vi, for a variable vi, then tA(a⃗) = ai and hence we have

h(tA(a⃗)) = h(ai) = t
B(h(a⃗)).

● If t = f(t1, ..., tk), for a function symbol f in τ , then

h(tA(a⃗)) = h(fA(tA1 (a⃗), ..., tAk (a⃗)))

[h is a homomorphism] = fB(h(tA1 (a⃗)), ..., h(tAk (a⃗)))

[by the induction hypothesis] = fB(tB1 (h(a⃗)), ..., tAk (h(a⃗)))

= tB(h(a⃗)).

�

Proposition 2.21. Let A,B be two τ -structures. If h ∶ A→ B is an isomorphism, then for
any formula φ(v1, ..., vn) and (a1, ..., an) ∈ An,

A ⊧ φ(a1, ...an) ⇐⇒ B ⊧ φ(h(a1), ..., h(an)).

Proof. We prove by induction on the construction (length) of φ. For the step of induction,
it is enough to consider only the following cases: φ ≡ ¬ψ, φ ≡ ¬ψ1 ∧ ψ2 and φ ≡ ∃vψ.

● If φ ≡ t1 = t2, then

A ⊧ φ(a⃗) ⇐⇒ tA1 (a⃗) = tA2 (a⃗)

[h is injective] ⇐⇒ h(tA1 (a⃗)) = h(tA2 (a⃗))

[by Lemma 2.20] ⇐⇒ tB1 (h(a⃗)) = tB2 (h(a⃗))

⇐⇒ B ⊧ φ(h(a⃗)).

● If φ ≡ R(t1, ..., tk), then the calculation is similar to the previous case (also uses
Lemma 2.20).

● If φ ≡ ¬ψ, then

A ⊧ φ(a⃗) ⇐⇒ A ⊭ ψ(a⃗)

[by the induction hypothesis] ⇐⇒ B ⊭ ψ(a⃗)

⇐⇒ B ⊧ φ(h(a⃗)).

● If φ ≡ ψ1 ∧ ψ2, then the calculation is similar to the previous case.
● If φ ≡ ∃vψ, then

A ⊧ φ(a⃗) ⇐⇒ ∃a′ ∈ A,A ⊧ ψ(a⃗, a′)

[by the induction hypothesis] ⇐⇒ ∃a′ ∈ A,B ⊧ ψ(h(a⃗), h(a′))

[use surjectivity of h for ⇐Ô] ⇐⇒ ∃b ∈ B,B ⊧ ψ(h(a⃗), b)

⇐⇒ B ⊧ φ(h(a⃗)).

�

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 11

Proposition 2.22. If a τ -structure A is a reduct of a τ ′-structure B, then for every τ -
formula φ(v⃗) and a⃗ ∈ An (= Bn),

A ⊧ φ(a⃗) ⇐⇒ B ⊧ φ(a⃗).

Proof. Trivial induction on formulas and possibly also terms. �

2.C. Definability

Definition 2.23 (Definability). Let M be a τ -structure and A ⊆ M . D ⊆ Mn is called
A-definable (or definable from A) in M if there is a formula φ(x⃗, y⃗), where x⃗ = (x1, ..., xn)

and y⃗ = (y1, ..., ym) (for some m ≥ 0), and a⃗ ∈Mm such that ∀b⃗ ∈Mn

b⃗ ∈D⇔M ⊧ φ(b⃗, a⃗).

If A = ∅, we say that D is 0-definable, and if A =M , we say that D is definable. We say
that an element b⃗ ∈ Mn is definable if so is the singleton {b⃗}. For a set D ⊆ M , a function
f ∶Dn →M is called A-definable if so is its graph {(a⃗, b) ∈Dn ×M ∶ f(a⃗) = b}.

Note that the set Dn(A) of A-definable subsets of Mn is an algebra, i.e. it is closed under
finite unions and complements and contains ∅ and Mn. It is very useful to consider the
topology Tn(A) on Mn generated by Dn(A). It is clear that Dn(A) is actually a base for
that topology. Note that this topology might not be Hausdorff (see Example 2.24(c) below)
and whether it is compact or not is tightly related to a property called saturation, which
however is outside the scope of this course.

Examples 2.24.

(a) In R = (R,0,1,+, ⋅), the set of positive numbers is 0-definable by the formula φ>0(x) ≡
x ≠ 0 ∧ ∃y(x = y2), where y2 is the abbreviation for y ⋅ y. Using this, one can define the
binary relation <⊆ R2 by the formula φ<(x, y) ≡ φ>0(y − x) (0-definable). Thus R and
R< = (R,0,1,+, ⋅,<) have the same definable sets.

(b) In R< the set {r ∈ R ∶ r < π} is definable by the formula x < π. It turns out that
this set is not 0-definable. This follows from the fact that π is transcendental and a
famous theorem of Tarski that R< admits “quantifier elimination”, which implies that
all 0-definable sets are just finite unions of intervals with algebraic (or infinite) endpoints.

(c) In C = (C,0,1,+, ⋅), the set {
√

2,−
√

2} is 0-definable by φ(z) ≡ z2−2 = 0, where z2 and 2

are the abbreviation for z ⋅ z and 1+1, respectively. However,
√

2 itself isn’t 0-definable!
This follows from the fact that C admits “quantifier elimination” (as we will see later),
so the only definable sets are those defined by polynomials and Boolean combinations
thereof. In particular, the topology T1(∅) of 0-definable sets isn’t Hausdorff (not even

T0) as any 0-definable set containing
√

2 also contains −
√

2.

(d) In any graph Γ = (Γ,E), the set

{(u, v) ∈ G2 ∶ the edge-distance between u and v is ≤ 2}

is 0-definable by the formula

φ(x, y) ≡ xEy ∨ ∃z(xEz ∧ zEy).

12 ANUSH TSERUNYAN

Similarly, one can show that for any n ≥ 1, the set

{(u, v) ∈ G2 ∶ the edge-distance between u and v is ≤ n}

is 0-definable. However it turns out that the set

{(u, v) ∈ G2 ∶ u and v are connected}

is not even definable in some (actually most) graphs. We will prove this later on in the
course after proving the Compactness theorem.

The definable subsets of N = (N,0, S,+, ⋅) are called arithmetical. It is easy to see that a
set is definable in N if and only if it is 0-definable.

2.D. Theories and models

Given a signature τ , a set of τ -sentences is called a τ -theory. The sentences in a theory T
are often referred to as axioms.

We say that a nonempty τ -structure M satisfies (or models) a τ -theory T and write M ⊧ T
if M ⊧ φ, for every φ ∈ T . Equivalently, we also say that M is a model of T .

A theory T is called satisfiable (or semantically consistent) if it has a model.
Given a τ -structure M, we put Th(M) = {φ ∶ φ is a τ -sentence and M ⊧ φ}. Note that

Th(M) is satisfiable and for every τ -sentence φ, Th(M) contains exactly one of φ and ¬φ.
We say that a τ -theory T satisfies a τ -sentence φ and write T ⊧ φ, if every model of T

satisfies φ, i.e. ∀M ⊧ T (M ⊧ φ). Equivalently, we say that T semantically implies φ.

Examples 2.25.

(a) The theory GRAPHS of undirected graphs with no loops in the signature τgraph = (E)
consists of the following axioms:

(i) (Undirected) ∀x∀y(xEy → yEx),
(ii) (No loops) ∀x(¬xEx).

(b) The theory of undirected infinite graphs with no loops in the signature τgraph = (E):

GRAPHS∞ = GRAPHS ∪ {∃v1∃v2...∃vn⋀
i<j
vi ≠ vj ∶ n ≥ 2}.

(c) The theory PO of partial orderings in the signature τPO = (≤) consists of the following
axioms:
(PO1) (Reflexivity) ∀x(x ≤ x).
(PO2) (Antisymmetry) ∀x∀y(x ≤ y ∧ y ≤ x→ x = y),
(PO3) (Transitivity) ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z).

(d) The theory GROUPS of groups in the signature τgroup = (1, ⋅) consists of the following
axioms:
(G1) (Associativity) ∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z],
(G2) (Identity) ∀x[1 ⋅ x = x ⋅ 1 = x],
(G3) (Inverse) ∀x∃y[xy = 1].

We know from group theory that GROUPS ⊧ ∀x∀y∀y′(yx = 1 = xy′ → y = y′).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 13

(e) Similarly, one defines the theory RINGS of rings in the signature τring = (0,1,+,−, ⋅) (too
many axioms to write, but still finitely many), and then the theory FIELDS of fields is
defined as RINGS together with the following three axioms:
(F1) (Nonzero) 0 ≠ 1,
(F2) (Commutativity) ∀x∀y[x ⋅ y = y ⋅ x],
(F3) (Multiplicative inverse) ∀x∃y[xy = 1],

(f) So far all the theories were finite. Here is an example of an infinite theory. The theory
of algebraically closed fields in the signature τring:

ACF = FIELDS ∪ {∀a0∀a1...∀an∃r[anr
n + an−1rn−1 + ... + a1r + a0 = 0] ∶ n ∈ N}.

(g) The theory of fields of characteristic p, for a prime number p:

FIELDSp = FIELDS ∪ {1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

= 0}.

One can easily show that for any n ≥ 0,

FIELDSp ⊧ 1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

= 0 ⇐⇒ p divides n.

(h) The theory of fields of characteristic 0:

FIELDS0 = FIELDS ∪ {1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

≠ 0 ∶ p prime}.

It is easy to see that for all n ≥ 1, FIELDS0 ⊧ 1 + 1 + ... + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

≠ 0.

(i) The theory of algebraically closed fields of fixed characteristic n, where n is either 0 or
prime:

ACFn = ACF ∪ FIELDSn.

(j) The theory PA of arithmetic, called Peano Arithmetic (defined by Peano), in the signa-
ture τa = (0, S,+, ⋅) consists of the following (infinitely many) axioms:
(PA1) ∀x[¬S(x) = 0],
(PA2) ∀x∀y[S(x) = S(y)→ x = y],
(PA3) ∀x[x + 0 = x],
(PA4) ∀x∀y[S(x + y) = x + S(y)],
(PA5) ∀x[x ⋅ 0 = 0],
(PA6) ∀x∀y[x ⋅ S(y) = x ⋅ y + x],
(PA7) (Axiom schema of induction) for all τa-formulas φ(x, y⃗), where x is a variable and

y⃗ is a vector of variables, the following is an axiom:

[φ(0, y⃗) ∧ ∀x(φ(x, y⃗)→ φ(x + 1, y⃗))]→ ∀xφ(x, y⃗).

Clearly, N ⊧ PA, where N = (N,0, S,+, ⋅).

(k) The Zermelo-Fraenkel set theory, ZFC, is a theory in the signature τset = (∈), in which
all of the mathematics is derived. Its list of axiom schemas is a little too long to be
listed here, so it is enough to mention that they express some basic facts about sets such
as existence of unions, definable subsets, an infinite set, etc.

14 ANUSH TSERUNYAN

Definition 2.26. A property Φ of τ -structures is called axiomatizable if there is a τ -theory
T such that for each τ structure M

M has property Φ ⇐⇒ M ⊧ T.

One can think of the property Φ as the class of τ -structures satisfying that property. We
showed above that for example the classes of infinite graphs, groups, algebraically closed
fields, etc., are axiomatizable. However, we will show later on in the course that the class of
connected graphs (as well as of disconnected graphs) is not axiomatizable (try proving that
it is axiomatizable to see where the problem is).

2.E. Elementarity

Let B be a τ -structure and A a substructure of B. It is an interesting question as to which
formulas A and B agree on. The following is all we can say for general A ⊆ B.

Proposition 2.27. Substructures agree on quantifier free formulas; more precisely, for τ -
structures A ⊆ B, any quantifier free τ -formula γ and a⃗ ∈ An, we have

A ⊧ γ(a⃗) ⇐⇒ B ⊧ γ(a⃗).

Proof. Easy induction on the construction of γ which only involves the cases γ ≡ ¬φ, γ ≡ φ∧ψ,
and γ ≡ t1 = t2, where for the latter case one has to use Lemma 2.20 and the fact that the
inclusion map A↪ B is a homomorphism. �

However, the opinions of a structure and a substructure about formulas with quantifiers
may differ. Typically, a formula of the form ∃xφ(x) may be valid in the bigger structure but
may not be in the substructure simply because the object for which φ holds (which we refer
to as a witness) may not be in the universe of the substructure. For example, in the signature
τgroup, a substructure of a group may not be a subgroup because not all elements might have
inverses in the substructure. Even if it was a subgroup, it might disagree with the ambient
group about the truth of statements like “being abelian” or “a particular element commutes
with everybody” (they may be true in the subgroup, but false in the ambient group). The
following definitions isolate those substructures which agree with the ambient structure on
all of the statements about the elements of the substructure.

Definition 2.28 (Elementary embedding). Let A,B be τ -structures. An embedding f ∶
A→ B is called elementary if for all formulas φ(x⃗) and tuples a⃗ ∈ An,

A ⊧ φ(a⃗) ⇐⇒ B ⊧ φ(f(a⃗)).

If such f exists, we say that A elementarily embeds into B and write A↪e B.

Definition 2.29 (Elementary substructure). A substructure A of a τ -structure B is called
elementary if the inclusion map is elementary. We denote this by A ≺ B.

Proposition 2.30 (Tarski-Vaught test). Let A be a substructure of a τ -structure B. A is
an elementary substructure of B if and only if for every formula φ(x⃗, y) and a⃗ ∈ An,

B ⊧ ∃yφ(a⃗, y) ⇐⇒ ∃a′ ∈ A such that B ⊧ φ(a⃗, a′).

Proof. ⇒∶ Supposing A ≺ B, we check the Tarski-Vaught condition:

[elementarity] B ⊧ ∃yφ(a⃗, y) ⇐⇒ A ⊧ ∃yφ(a⃗, y)
[definition of ⊧] ⇐⇒ ∃a′ ∈ A such that A ⊧ φ(a⃗, a′)
[elementarity] ⇐⇒ ∃a′ ∈ A such that B ⊧ φ(a⃗, a′).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 15

⇐∶ Suppose the Tarski-Vaught condition holds and show by induction on the construction
of formulas that for every τ -formula φ and a⃗ ∈ An, we have

A ⊧ φ(a⃗) ⇐⇒ B ⊧ φ(a⃗).

Since Proposition 2.27 takes care of the atomic formulas and the cases φ ≡ ¬ψ and φ ≡ ψ0∧ψ2

are straightforward, so we only consider the case φ(x⃗) ≡ ∃yψ(x⃗, y). Fix a⃗ ∈ An and check:

[Tarski-Vaught condition] B ⊧ ∃yψ(a⃗, y) ⇐⇒ ∃a′ ∈ A such that B ⊧ ψ(a⃗, a′)
[induction] ⇐⇒ ∃a′ ∈ A such that A ⊧ ψ(a⃗, a′)

[definition of ⊧] ⇐⇒ A ⊧ ∃yψ(a⃗, y).

�

Given a τ -structure B and S ⊆ B, we could define a substructure generated by S as the
smallest substructure containing S mainly because intersection of substructures is still a sub-
structure. However, intersection of elementary substructures may not be elementary, so we
cannot define “the elementary substructure generated by S” like we did with substructures.

Let us re-examine how the substructure generated by S is produced: we have to throw in
all the constants of B into S and close the resulting set S1 under the functions of B. The
closing is an iterative process that one has to repeat ℵ0-many1 times, that is, assuming Sn
is defined, let Sn+1 ∶= Sn ∪⋃f∈FB

fB[Sn], where F is the set of function symbols of τ and if
f ∈ FB is a k-ary function, then fB[Sn] stands for fB(Skn). Finally put A ∶= ⋃∞

n=1 Sn and
this A will be closed under all functions in FB, hence will be a universe of a substructure.
It is worth noting here that ∣A∣ ≤ max(∣S∣, ∣τ ∣,ℵ0).

Now according to the Tarski-Vaught test, to be a universe of an elementary substructure,
a set has to also contain witnesses to all formulas that claim existence of an object and are
valid in B. So in our procedure above, at every step, we have to additionally throw in these
witnesses together with values of functions, and that’s all. In fact, only throwing witnesses
will also add the values of functions because for every k-ary function symbol f and a⃗ ∈ Bk,
the unique witness to the formula ∃yf(a⃗) = y is exactly fB(a⃗). Same is true for constant
symbols.

The following theorem summarizes this discussion:

Theorem 2.31 (Löwenheim-Skolem). Let B be a τ -structure and S ⊆ B. There exists A ≺ B
with A ⊇ S such that ∣A∣ ≤ max(∣S∣, ∣τ ∣,ℵ0).

Proof. We start by choosing witnesses for the formulas that claim existence of an object in
B. For each τ -formula φ(x⃗, y), where x⃗ = (x1, ..., xk), define a partial2 function fφ,k ∶ Bk ⇀ B

by b⃗ ↦ one of the witnesses to B ⊧ ∃yφ(b⃗, y) if such exist; more precisely, if B ⊧ ∃yφ(b⃗, y)

then fφ,k(b⃗) is defined and is equal to one of the elements3 b′ ∈ B for which B ⊧ φ(b⃗, b′).
These fφ,k are often called Skolem functions.

Now we recursively construct an increasing sequence (Sn)n∈N of subsets of B as follows:
put S0 = S, and assuming Sn is defined, let

Sn+1 ∶= Sn ∪⋃
φ,k

fφ,k(S
k
n).

1ℵ0 denotes the cardinality of N.
2A partial function f ∶X ⇀ Y is a function whose domain is a (possibly empty) subset of X.
3We are using the Axiom of Choice here.

16 ANUSH TSERUNYAN

Finally, let A ∶= ⋃n∈N Sn and it is now straightforward to check that A is a universe of a
substructure, which passes the Tarski-Vaught test and is thus elementary. �

Remark. In the definition of the Skolem functions above, it was possible that the same
formula had multiple witnesses and we were free to choose any of them. Depending on this
choice, the resulting substructure may be different (i.e. it is not canonical), and that is why
there is no notion of “the elementary substructure generated by S”.

Definition 2.32 (Elementary equivalence). Let A and B be τ -structures. We say that A
and B are called elementarily equivalent, and write A ≡ B, if Th(A) = Th(B).

By Proposition 2.21, isomorphic structures are elementarily equivalent. However, the
converse is false! For example, it is a homework problem to show that (Q,<) and (R,<)
are elementarily equivalent (in fact, (Q,<) ≺ (R,<)), but they clearly cannot be isomorphic
simply because of cardinality considerations.

2.F. Formal proofs

So far, we have been dealing with the semantic (model-theoretic) aspect of FOL, i.e. struc-
tures/models, satisfiability, definability, etc. In this section we turn to the syntactic aspect,
namely proof systems and formal proofs.

We fix a signature τ for this subsection and everything below is assumed to be in this
signature.

We need the following technical definition in order to state some of the axioms:

Definition 2.33. Let φ be a formula and t be a term. We say that t is free for v in φ if no
variable in t is quantified in φ and v is not quantified in φ. If t is free for v in φ, we define
φ(t/v) to be the formula obtained from φ by replacing all occurrences of v by t.

Thus whenever we write φ(t/v), it is assumed that t is free for v in φ. Also, from now on,
we treat φ ∨ psi;φ ∧ ψ;∃vφ as abbreviations for ¬φ→ ψ;¬(φ→ ¬ψ);¬∀v¬φ.

The following are the axioms (or axiom schemes) and rules of inference of FOL(τ).

Propositional axioms. For every τ -formula φ,ψ,χ, we have:

Axioms for →:

(1) φ→ (ψ → φ)
(2) (φ→ ψ)→ [(φ→ (ψ → χ))→ (φ→ χ)]

Axiom for ¬:

(3) (φ→ ψ)→ [(φ→ ¬ψ)→ ¬φ]
(4) ¬¬φ→ φ

(5a) (φ→ ψ)→ (¬ψ → ¬φ); (5b) (¬ψ → ¬φ)→ (φ→ ψ)

Axioms for ∧:

(6) φ→ [ψ → (φ ∧ ψ)]
(7a) (φ ∧ ψ)→ φ; (7b) (φ ∧ ψ)→ ψ
(8) (φ ∧ ¬φ)→ ψ

Axioms for ∨:

(9) (φ→ χ)→ [(ψ → χ)→ ((φ ∨ ψ)→ χ)]

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 17

(10a) φ→ (φ ∨ ψ); (10b) ψ → (φ ∨ ψ)

Quantifier axioms. For every τ -formula φ,ψ,χ, τ -term t, and variable v, we have:

(11) ∀v(φ→ ψ)→ (φ→ ∀vψ) [v does not occur in φ]
(12) Instantiation: ∀vφ→ φ(t/v) [t is free for v in φ]
(13) Generalization: φ→ ∀vφ [v is not quantified in φ]
(14) ∃-elimination: (φ→ ψ)→ (∃vφ→ ψ) [v is not quantified in φ and does not occur in ψ]
(15) φ(t/v)→ ∃vφ [t is free for v in φ]

Equality axioms. For every n ∈ N, each n-ary relation symbol R and n-ary function symbol
f in τ , we have:

(16) v = v; v = v′ → v′ = v; (v = v′ ∧ v′ = v′′)→ v = v′′

(17) (⋀ni=1 vi = wi)→ (R(v1, ..., vn)→ R(w1, ...,wn))
(18) (⋀ni=1 vi = wi)→ (f(v1, ..., vn) = f(w1, ...,wn))

Rule of inference. For every τ -formula φ,ψ, we have:

(19) Modus Ponens: φ,φ→ ψ Ô⇒ ψ

The proof of the following lemma is an easy but tedious verification:

Lemma 2.34. All of the axioms above are valid in every τ -structure and Modus Ponens
preserves validity.

Definition 2.35. Let T be a theory and φ be a formula. A proof of φ from T is a finite
sequence φ1, φ2, ...φn of formulas such that φn = φ and for each i

either φi is an axiom of FOL(τ),
or φi ∈ T ,
or φi follows from the previous φj-s by Modus Ponens; more precisely, for some j, k < i, φi
is obtained from φj and φk by Modus Ponens.

We say that T proves φ (or φ is proved in T) and write T ⊢ phi if there exists a proof of
φ from T . When T = ∅, we just write ⊢ φ.

The following example illustrates formal proofs and how tedious (even hard) it can be to
find formal proofs of statements that are “obviously” true.

Example 2.36. Here is a formal proof of θ → θ from the empty theory, for all formulas θ:

(i) (θ → (θ → θ)) → [(θ → ((θ → θ) → θ)) → (θ → θ)] [Axiom (2) for φ ≡ χ ≡ θ and
ψ ≡ (θ → θ)],

(ii) θ → (θ → θ) [Axiom (1) for φ ≡ ψ ≡ θ],
(iii) (θ → ((θ → θ)→ θ))→ (θ → θ) [Modus Ponens (i), (ii)],
(iv) θ → ((θ → θ)→ θ) [Axiom (1) for φ ≡ θ and ψ ≡ (θ → θ)],
(v) θ → θ [Modus Ponens (iii), (iv)].

The following proposition justifies why we introduced a proof system and formal proofs:

Proposition 2.37 (Soundness). If T ⊢ φ then T ⊧ φ.

Proof. This follows by induction on the length of the formal proof of φ and Lemma 2.34. �

Lemma 2.38 (Deduction theorem). For a theory T , a sentence χ and a formula φ,

T,χ ⊢ φ ⇐⇒ T ⊢ χ→ φ.

18 ANUSH TSERUNYAN

Proof. ⇐∶ Follows by an application of Modus Ponens.
⇒∶ Letting φ1, ..., φn with φn ≡ φ be a proof of φ from T ∪ {χ}, we show that T ⊢ χ → φ by
induction on n.

Case n = 1: φ ≡ φ1 is an axiom of FOL(τ) or is in T . Then T ⊢ φ, and by Axiom (1),
T ⊢ φ→ (χ→ φ), so Modus Ponens gives T ⊢ χ→ φ.

Case n = 1: φ ≡ φ1 ≡ χ. Then T ⊢ χ → φ is the same as T ⊢ φ → φ, which is done in
Example 2.36.

Case n ⇒ n + 1: φ ≡ φn+1 is obtained by Modus Ponens. Then there is i, j ≤ n such that
φj ≡ φi → φ. By the inductive hypothesis, T ⊢ χ→ φi and T ⊢ χ→ (φi → φ). By Axiom (2),

T ⊢ (χ→ φi)→ [(χ→ (φi → φ))→ (χ→ φ)]

so applying Modus Ponens twice, we get T ⊢ χ→ φ. �

Let S be a set of symbols neither of which is in τ . Then we denote by τ(S) the extension
of τ obtained by adding to it the symbols in S as constant symbols. If S = {s1, ..., sn} is
finite, we just write τ(s1, ..., sn).

Lemma 2.39 (Constant Substitution). Let c be a symbol that is not in τ and let v be free
in a τ -formula φ. For a τ -theory T ,

T ⊢ φ(c/v) ⇐⇒ T ⊢ φ,

where in the first statement T is viewed as a τ(c)-theory.

Proof. This is done by induction on the length of the formal proof and is left as an exercise.
�

3. Completeness of FOL and its consequences

Proposition 2.37 (the soundness of the proof system) says that if we have a “first order
(finite) certificate” that something is true (is a syntactic consequence of T), then it is indeed
true (in every model of T). What about the converse: is the validity of φ in every model
of T witnessed by an actual formal proof from T? If the answer to this question was
no, mathematicians would appear in a pretty rough shape since it would be possible that
some (first order) statement was true in every model of T (e.g. Hilbert’s Nullstellensatz for
algebraically closed fields), but we would have no (first order) way of proving it. Fortunately,
the answer is YES and that is the content of the Completeness Theorem to which this section
is devoted.

3.A. Syntactic-semantic duality, completeness and compactness

We have already defined some syntactic and semantic notions for a theory T such as T ⊢ φ,
T ⊧ φ, T is satisfiable. In this subsection, we define some more notions and draw analogies
between the semantic and syntactic ones. Finally, we state the Completeness theorem, which
in my opinion should have been called the Syntactic-Semantic Duality theorem. It is called
Completeness because it shows that the proof system defined in the previous section is
“complete” in the sense that the axioms and rules of inference that we threw in are enough
to prove any statement that is logically (semantically) implied by T .

Let ⊺ denote the sentence ∀x(x = x) and set ⊥≡ ¬⊺.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 19

Definition 3.1. A τ -theory T is said to be

● consistent if there is no τ -sentence φ such that T ⊢ φ ∧ ¬φ;
● complete if for any τ -sentence φ, T ⊢ φ or T ⊢ ¬φ;
● semantically complete if for any τ -sentence φ, T ⊧ φ or T ⊧ ¬φ.

Note that a satisfiable theory is consistent by the Soundness of the proof system. Also,
any inconsistent theory is automatically complete because one can easily show that ⊢⊥→ φ
for any τ -formula φ. Clearly, Th(M) is complete for any τ -structure M.

The following is a more convenient characterization of semantic completeness.

Proposition 3.2 (Semantic completeness, rephrased). A τ -theory T is semantically com-
plete if and only if for any A,B ⊧ T , A ≡ B.

Proof. Left as an exercise. �

Lemma 3.3 (About consistency). Let T be a τ -theory.

(a) T is consistent if and only if there is a sentence χ such that T ⊬ χ.
(b) T is consistent if and only if every finite subset of T is consistent.
(c) For any sentence χ, T ∪ {χ} is inconsistent if and only if T ⊢ ¬χ.
(d) If T is consistent, then for any sentence χ, at least one of T ∪ {χ} and T ∪ {¬χ} is

consistent.
(e) If ∃vφ(v) is a sentence, T ∪ {∃vφ(v)} is consistent, and c is a constant symbol that does

not occur in T ∪ {∃vφ(v)}, then T ∪ {φ(c)} is consistent.

Proof. Part (a) just expresses the fact that once a theory proves a contradiction, then it
proves every sentence. (b) follows from the fact that proofs are finite. We prove the rest in
detail.

The right-to-left direction of (c) is immediate, and we show the other direction. Assume
T ∪ {χ} is inconsistent and hence T,χ ⊢⊥. By the Deduction theorem (this is where we
really need this theorem), T ⊢ χ →⊥, and hence, by Axiom (4) and Modus Ponens, we get
T ⊢ ⊺ → ¬χ. But ⊺ is an axiom (more precisely, it follows from Axioms (16) and (13), and
Modus Ponens), so T ⊢ ⊺, and hence by applying Modus Ponens again, we get T ⊢ ¬χ.

For (d), we prove the contrapositive. Assume both T ∪{χ} and T ∪{¬χ} are inconsistent.
Then by (c), T ⊢ ¬χ and T ⊢ ¬¬χ. Thus T ⊢ χ ∧ ¬χ and hence is inconsistent.

For (e), we also prove the contrapositive. Assume T ∪{φ(c)} is inconsistent. Then by (c),
T ⊢ ¬χ(c). By the constant substitution lemma (Lemma 2.39), T ⊢ ¬φ(v), and by Axiom
(13), T ⊢ ∀v¬φ(v), so T ⊢ ¬∃vφ(v). Thus, by (c), T ∪ {∃vφ(v)} is inconsistent. �

Note the following “compactness” phenomenon: if T ⊢ φ, then there is a finite T0 ⊆ T
with T0 ⊢ φ. This is an immediate consequence of the fact that formal proofs are finite and
hence they only use finitely many axioms from T . This “compactness” statement is actually
equivalent to the fact that the following topological space is compact: let T be the set of
all consistent complete theories and take the topology generated by the sets of the form
⟨φ⟩ ∶= {T ∈ T ∶ T ⊢ φ}, where φ ranges over all τ -sentences. The proof of the equivalence
uses the following lemma and is left as an exercise.

Lemma 3.4. Any (syntactically) consistent τ -theory T has a consistent completion, i.e.
there exists a consistent complete τ -theory T ′ ⊇ T .

20 ANUSH TSERUNYAN

Proof. We give two proofs: one for countable τ and one for arbitrary τ ; the first one is a
(seemingly) more hands on construction and students not familiar with Zorn’s lemma may
find it more helpful.

Proof for countable τ . In this case there are only countably many formulas, so we can enu-
merate all sentences (φn)n∈N. Put T0 ∶= T , and recursively construct an increasing sequence
(Tn)n∈N of consistent theories as follows. Assuming that Tn is defined and is consistent, put
Tn+1 ∶= Tn ∪ {φn} if Tn ⊬ ¬φn, and put Tn+1 ∶= Tn ∪ {¬φn}, otherwise. It follows from (c)
of Lemma 3.3 that Tn+1 is consistent. Finally, put T ′ ∶= ⋃n Tn. Note that T ′ ⊇ T and T ′

is consistent: indeed, if it was inconsistent, then, by (b) of Lemma 3.3 some finite subset
F ⊆ T ′ would be inconsistent, but this F would be trapped in some Tn, i.e. F ⊆ Tn, making
Tn inconsistent, which is a contradiction. Lastly, it is immediate from the construction that
T ′ is complete.

Proof for arbitrary τ . By (b) of Lemma 3.3, inconsistent theories have inconsistent finite
subsets, so arbitrary increasing unions of consistent theories are consistent. Thus, by Zorn’s
lemma, there is a ⊆-maximal consistent theory T ′ ⊇ T and it remains to show that it is
complete. Indeed, if it wasn’t, then there would be a sentence φ such that T ′ ⊬ φ and T ′ ⊬ ¬φ.
But then, by (c) of Lemma 3.3, T ′′ ∶= T ′ ∪ {φ} is consistent and T ′′ ⊋ T ′, contradicting the
maximality of T ′. �

The following table compares the notions we have defined.

Notions Syntactic (Proof-theoretic) Semantic (Model-theoretic)
Consistency T ⊬⊥ ∃ (nonempty) M ⊧ T
Implication T ⊢ φ T ⊧ φ

Completeness ∀φ, T ⊢ φ or T ⊢ ¬φ ∀A,B ⊧ T , A ≡ B
Compactness T ⊢ φ Ô⇒ ∃ finite T0 ⊆ T , T0 ⊢ φ T ⊧ φ Ô⇒ ∃ finite T0 ⊆ T , T0 ⊧ φ

Although the statements in each row are clearly analogous, there is no immediate reason
to think that they may be equivalent. For example, it is not clear at all whether the semantic
version of the compactness statement is true. This is why one should appreciate the following

Theorem 3.5 (Completeness of FOL; Gödel, 1929). Any consistent τ -theory T is satisfiable.
In fact, it has a model of cardinality at most max{∣τ ∣,ℵ0}.

Remark 3.6 ((silly)). Completeness of FOL should NOT be confused with completeness
of a theory; these are two completely different notions, they just use the same adjective
(unfortunate terminology). I put this remark here because I have had students ask me
whether Gödel’s Completeness theorem contradicts his Incompleteness theorem. The first
one means Completeness of FOL, the second means Incompleteness of PA (as a theory).

Before proceeding with a proof of this theorem, let us mention a couple of very important
immediate corollaries.

Corollary 3.7 (Syntactic-semantic duality). The statements in each row of the above table
are equivalent. In particular, for any τ -sentence φ,

T ⊢ φ ⇐⇒ T ⊧ φ.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 21

Proof. We only prove that T ⊧ φ implies T ⊢ φ since the rest easily follows from it. We show
the contrapositive. Suppose T ⊬ φ, in particular T is consistent (inconsistent theories prove
everything). Moreover, T ∪ {¬φ} is consistent by (c) of Lemma 3.3, so the Completeness
theorem gives a model M ⊧ T ∪ {¬φ}, and hence, T ⊭ φ. �

Remark 3.8. If one somehow manages to prove a first-order statement φ about all models of
T using methods from outside of FOL, the syntactic-semantic duality implies that there is
a first-order proof of φ from T and using external methods was an overkill.

A theory is called finitely satisfiable if every finite subset of it is satisfiable. Rephrasing
the semantic version of the compactness statement above, we get (probably) the most useful
theorem of logic:

Theorem 3.9 (Compactness). If a τ -theory T is finitely satisfiable, then it is satisfiable. In
fact, it has a model of cardinality at most max{∣τ ∣,ℵ0}.

Proof. Because T is finitely satisfiable, every finite subset of it is consistent. Hence T is
consistent and the Completeness theorem applies. �

The Compactness theorem has a wide range of applications and we will mention some of
them in the upcoming lectures.

3.B. Henkin’s proof of Gödel’s Completeness Theorem

In this subsection we give a proof of Gödel’s Completeness theorem that is due to Henkin.
We start with a consistent theory T in a signature τ and our goal is to build a model for

it. To appreciate the difficulty of this task, think of the following particular case: given a set
of (first order) conditions together with the field axioms, how hard would it be to construct
a field satisfying those conditions. In this example at least, our knowledge of algebra may
help finding or constructing such a field, but to build a model for T , it’s not even clear where
to start.

The first question we need to address is what underlying set we should take for our future
model. In general, the objects in the underlying sets of different structures are of different
nature; for example, the objects in the group GLn(R) are matrices, whereas those in the
group Sn are permutations. But of course, we can always take isomorphic copies of these
structures whose underlying sets are build of the same material, such as names or symbols.
More precisely, given a structure M = (M,τ), we can give a name cm to each element
m ∈M , obtaining a new underlying set CM ∶= {cm ∶m ∈M} and a τ -structure M′ ∶= (CM , τ)
isomorphic to M, but the objects in the underlying set of M′ are just names (i.e. symbols).
It’s like taking GLn(R) and replacing the matrices with their pictures (JPEG images if you
will).

We can use this idea of naming the elements of a given structure even further. Given
Th(M), we usually cannot recover the structure M even if we know the underlying set M .
However, we can upgrade our signature τ so that we can: put τ ′ ∶= τ ∪ CM , where the
cm ∈ CM are treated as constant symbols in τ ′. We may then naturally extend M into a τ ′-
structure M′ by interpreting each constant symbol cm as m, i.e. cM

′

m ∶=m. Now the structure
M′ = (M,τ ′) is such that every element in its underlying set M has a name in the signature
τ ′, so Th(M′) will tell us exactly how the constant symbols, function symbols and relation
symbols in τ ′ are interpreted in M′; for example, if m1,m2,m3 ∈M and fM′

(m1,m2) =m3,
then Th(M′) would contain the τ ′-sentence f(cm1 , cm2) = cm3 .

22 ANUSH TSERUNYAN

Why is this useful for us in proving the Completeness theorem? Well, we are to build a
model of T , so we have to define interpretations of the symbols in τ so that it agrees with
T , so it would be really nice if T could tell us how exactly to define those interpretations
because if we follow do exactly as T says, then naturally we will end up with a model of T
because T is consistent. However, T , as given, may have a very incomplete picture of how
it’s models look like; for example, it could be incomplete. We can fix the incompleteness of
T by completing it (see Lemma 3.4) and working with a completion instead, but even this
is not enough. We want our signature to be rich enough to provide means for the theory to
give us specifics about the elements of the future model we are trying to construct, just like
Th(M′) does. The following definition makes this precise.

Definition 3.10. A σ-theory H is called a σ-Henkin set (or just a Henkin set) if

(H1) H is consistent,
(H2) for each σ-sentence χ, χ ∈H or ¬χ ∈H,
(H3) if ∃vφ(v) ∈H, then there is a constant symbol c in σ such that φ(c) ∈H.

Note that the existence of a Henkin set implies that σ has at least one constant symbol.
The constant c in (H3) is called a Henkin witness for ∃vφ(v), so basically a Henkin set is
a consistent (strongly) complete theory with Henkin witnesses. Our initial signature τ may
not contain Henkin witnesses, so we artificially create them and throw them into τ ; more
precisely, letting κ ∶= max{∣τ ∣,ℵ0}, we take a set D ∶= {dn}n≤κ of distinct constant symbols
not in τ and put τ̄ ∶= τ ∪D.

Lemma 3.11 (Constructing a Henkin set). If T is consistent, then there exists a τ̄ -Henkin
set H ⊇ T .

Proof. We will prove this assuming τ is countable to make the exposition easier to understand
for those readers who are not familiar with the ordinals and cardinals. However, the readers
who are familiar are invited to prove this for general τ . Note that for countable τ , κ = ℵ0,
so D ∶= {dn}n∈N.

Since τ̄ is countable, there are exactly ℵ0-many τ̄ -sentences, so we enumerate them:
(φn)n∈N. We emphasize, that these φn range over all τ̄ -sentences, not just τ -sentences. Let-
ting τn ∶= τ ∪ {di ∶ i < n}, for n ≥ 0, we recursively construct an increasing sequence (Hn)n∈N,
where each Hn is a consistent complete τn-theory, as follows: let H0 be a completion of T
and suppose that Hn is defined and satisfies the required conditions, i.e. it is a consistent
complete τn-theory. If every sentence in Hn of the form ∃vφ(v) has Henkin witness, then
Hn is a Henkin set in the signature τn and we are done. Otherwise, there is a sentence
φm of the form ∃vφ(v) that doesn’t have a Henkin witness and we take m to be the least
such index. Since ∃vφ(v) ∈ Hn and Hn is consistent, so must be Hn ∪ {φ(dn)} by (e) of
Lemma 3.3 because dn does not occur in Hn. Thus, we let Hn+1 be a completion of Hn in the
signature τn+1, and this finishes the construction of the sequence (Hn)n∈N. Finally, taking
H ∶= ⋃n∈NHn, we leave it as an exercise to verify that H is a τ̄ -Henkin set. �

Having constructed a τ̄ -Henkin set H, we now construct a model of H, i.e. a τ̄ -structure
satisfying H and then take its reduct to the signature τ (i.e. forget the names of Henkin
witnesses).

Lemma 3.12 (Constructing a model for a Henkin set). If H is a Henkin set in a signature
σ, then it has a model. In fact, it has a model whose cardinality is at most the cardinality of
the set of constants in σ.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 23

Proof. As our first attempt, we take the set of constant symbols C of σ as the universe of
our future model C with the following interpretations: for all e1, ..., en, e ∈ C,

cC = c, for every constant symbol c in σ
RC(e1, ..., en) ⇐⇒ R(e1, ..., en) ∈H, for every n-ary relation symbol R in σ

fC(e1, ..., en) = e ⇐⇒ f(e1, ..., en) = e ∈H, for every n-ary function symbol f in σ.

This construction almost works except that it may well be that c = c′ ∈ H, for distinct
constant symbols c and c′ in C̄. Because of this, C is not even a σ-structure since the last
clause defines a multi-valued function. Even if we managed to choose a single valued branch
for fC, C would still not be a model of H because it would not satisfy c = c′. So what we
do is we mod out C by the equivalence relation c = c′ ∈ H. More precisely, for all c, c′ ∈ C,
define

c ∼ c′ ⇐⇒ c = c′ ∈H.

It follows from Axioms (12) for equality that ∼ is an equivalence relation on C.
Put M = C/ ∼, so M = {[c] ∶ c ∈ C}, where [c] denotes the equivalence class of c. We define

a σ-structure M with universe M and the following interpretations: for all e1, ..., en, e ∈ C,

cM = [c], for every constant symbol c in σ
RM([e1], ..., [en]) ⇐⇒ R(e1, ..., en) ∈H, for every n-ary relation symbol R in σ

fM([e1], ..., [en]) = e ⇐⇒ f(e1, ..., en) = e ∈H, for every n-ary function symbol f in σ.

Claim 1. M is well-defined.

Proof of Claim. One has to prove that the definitions of RM and fM do not depend on the
choice of the representatives of the equivalence classes, but this immediately follows from
Axioms (17) and (18) of FOL(τ̄). Moreover, for f as above, we need to show that for all
e1, ..., en ∈ C, there exists e ∈ C such that f(e1, ..., en) = e ∈ H. We aim at getting such e ∈ C
as a Henkin witness to ∃vφ(v), where φ(v) ≡ f(e1, ..., en) = v, so it is enough to show that
H ⊢ ∃vφ(v). But by Axioms (16) and (12), H ⊢ f(e1, ..., en) = f(e1, ..., en), and the latter
sentence is precisely φ(f(e1, ..., en)/v). Thus, H ⊢ φ(f(e1, ..., en)/v), so using Axiom (15),
we get H ⊢ ∃vφ(v). ⊣

Claim 2. For every σ-term t with no variables, there exists c ∈ C such that t = c ∈ H and
M ⊧ t = [c].

Proof of Claim. We do induction on the construction (length) of t. The case of t being a
variable is excluded, so the only base case is t ≡ e, where e is a constant symbol of σ. Then
take c ≡ e, and clearly e = e ∈H since ⊢ e = e. Also, by the way we defined the interpretation
for constants, M ⊧ e = [e].

Now assume that t = f(t1, ..., tn). By the induction hypothesis, we have c1, ..., cn ∈ C such
that ti = ci ∈ H and M ⊧ ti = [ci], for i = 1, ..., n. Thus by Axiom (18), H ⊢ f(t1, ..., tn) =
f(c1, ..., cn). Also, because fM is a function, M ⊧ f(t1, ..., tn) = f(c1, ..., cn). Now, by the
definition of the interpretation of function symbols, there is e ∈ C such that f(c1, ..., cn) =
e ∈ H and M ⊧ f([c1], ..., [cn]) = [e]. Thus, by Axiom (16), f(t1, ..., tn) = e ∈ H, and by
transitivity of equality, M ⊧ f(t1, ..., tn) = [e]. ⊣

Claim 3. M ⊧H.

24 ANUSH TSERUNYAN

Proof of Claim. We show that for every σ-formula φ and c1, ..., cn ∈ C,

M ⊧ φ([c1], ..., [cn]) ⇐⇒ φ(c1, ..., cn) ∈H

by structural induction on the construction of φ. The cases of equality and a relation symbol
are handled by applying Claim 2 and Axioms (16), (17). The case of ¬ follows easily from
the induction hypothesis and the completeness of H, while the case of ∧ follows from the
induction hypothesis and the FOL(τ̄) axioms for ∧. We now handle the remaining case of
φ([c1], ..., [cn]) ≡ ∃vψ([c1], ..., [cn], v) as follows:

M ⊧ φ([c1], ..., [cn]) ⇐⇒ there is [b] ∈M such that M ⊧ ψ([c1], ..., [cn], [b])

[by induction] ⇐⇒ there is b ∈ C such that ψ(c1, ..., cn, b) ∈H

⇐⇒ ∃vφ(c1, ..., cn) ∈H,

where in the last equivalence, Ô⇒ is by Axiom (15) and ⇐Ô is because there are Henkin
witnesses. ⊣

The last claim finishes the proof of the lemma. �

Proof of the Completeness Theorem 3.5 (Henkin, 1949). By Lemma 3.11, there is a τ̄ -Henkin
set H ⊇ T . Now applying Lemma 3.12 to σ = τ̄ and H, we get a model M of H of cardinality
at most ∣σ∣ and hence at most κ = max{∣τ ∣,ℵ0}. Finally, take the reduct of M to the signature
τ . �

From now on, we will not differentiate between the notions of consistent theory and sat-
isfiable theory, completeness and semantic completeness, etc.

3.C. The Skolem “paradox”

The Completeness theorem has the following striking consequence: if ZFC is consistent
(which we really hope it is), then it has a countable model. This is maybe strange because
that countable model M believes that there is an uncountable set since Cantor’s theorem
that R is uncountable is true in M. Does this imply that ZFC is inconsistent?

The answer is of course NO and here are the two reasons why (the main reason is (2)):

(1) It may well be that M = N with a binary relation ∈M defined on it. So what if somehow M
satisfies the statement that reads “there is an uncountable set”? It is just some statement
about this binary relation ∈M and it does not imply anything about the actual sets and
the cardinality of M .

(2) Even if M was a set of sets and ∈M was the true ∈, then the countability of M would
simply imply that M’s version of the real numbers, RM, is indeed countable (for us),
i.e. there is a bijection of RM with N. This bijection is a set (any function is a set
of pairs), but it may not be an element of M . In fact, since M satisfies the statement
“RM is uncountable”, we conclude that NO bijection of RM with N is an element of M .
In other words, M does not “see” the countability of RM and thus thinks that RM is
uncountable. It’s like how people thought the world was endless before they discovered
it was round since all they could see was the ocean up to the line of the horizon and for
all they knew it continued forever. It was also not too long ago that we still thought the
universe was infinite until we discovered the big bang theory. The difference is that we
eventually obtained this (perhaps still questionable) knowledge, while M never will.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 25

3.D. Elementary diagrams and the upward Löwenheim-Skolem theorem

One of the numerous consequences of the compactness is the following general statement
about cardinalities of models.

Theorem 3.13 (Löwenheim-Skolem, weak version). If a τ -theory T has an infinite model,
then it has a model of any cardinality κ ≥ max{∣τ ∣,ℵ0}.

Proof. Put τ̄ = τ ∪ {cα}α<κ, where cα are constant symbols that are not in τ . Define

T ′ = T ∪ {cα ≠ cβ ∶ α ≠ β,α, β < κ}.

T ′ is finitely satisfiable since it has an infinite model. Thus, by the Compactness theorem,
T ′ has a model M of cardinality at most κ since ∣τ̄ ∣ = κ ≥ ℵ0. On the other hand, ∣M ∣ ≥ κ
since cMα ≠ cMβ for distinct α,β < κ. Thus ∣M ∣ = κ. �

This theorem implies for example that PA has uncountable models!
Recall that the Löwenheim-Skolem theorem gave us an elementary substructure A of a

given τ -structure B of any cardinality κ ≤ ∣B∣ as long as κ ≥ max{∣τ ∣,ℵ0}. We would like to
also get an upward version of this, i.e. start with a τ -structure A and get an elementary
extension B ≻ A of any cardinality ≥ max{∣A∣, ∣τ ∣,ℵ0}. To achieve this, we may consider
applying the previous theorem to Th(A). However, this would only give us a structure B
that is elementarily equivalent to B, i.e. A ≡ B, whereas we want A ↪e B. This is because
Th(A) has no means to capture the truth about the elements of A — same problem we ran
into in the discussion preceding the proof of the completeness theorem and we handle it the
same way: we give names to elements of A.

Definition 3.14. Let A be a τ -structure. Let CA ∶= {ca ∶ a ∈ A} be a set of distinct symbols
not in τ and define a new signature τA ∶= τ ∪ CA, where the symbols in CA are treated as
constant symbols.

Theorem 3.15. Any τ -structure A has an elementary extension of any cardinality κ ≥
max{∣A∣, ∣τ ∣,ℵ0}; more precisely, there is a τ -structure B such that ∣B∣ = κ and A ≺ B.

Proof. Extend the signature to τ ′ by adding a name (constant symbol) for each element of
A and let A′ be the corresponding τ ′-structure (natural extension of A to the signature τ ′).
Get a model of Th(A′) of cardinality κ. �

3.E. Nonstandard models of arithmetic

A nonstandard model of Peano arithmetic is any model of PA that is not isomorphic to
N = (N,0, S,+, ⋅). As mentioned above, PA has uncountable models and hence they are
nonstandard. In this subsection we construct a countable nonstandard model of PA.

For the rest of the subsection we work in the signature τa = (0, S,+, ⋅) of arithmetic.
For each n ∈ N, recursively define a τa-term ∆(n) as follows:

{
∆(0) ≡ 0
∆(n + 1) =≡ S(∆(n))

.

Note that for every n ∈ N, N ⊧∆(n) = n and hence N = {∆(n)N ∶ n ∈ N}.

Proposition 3.16. There is a countable nonstandard model of PA.

26 ANUSH TSERUNYAN

Proof. Let w be a new constant symbol not in τa and consider the extension σ = τa ∪ {w}.
Put

T = PA ∪ {w ≠ ∆(n) ∶ n ∈ N}.

T is finitely satisfiable because for any finite T0 ⊆ T , letting n be the maximum number with
w ≠ ∆(n) ∈ T0, the expansion of N to a σ-structure with w being interpreted as n+1 satisfies
T0. Thus, by the Compactness theorem, T has a countable model M.

To see that this M is nonstandard, assume for contradiction that there is an isomorphism
f ∶ N →M. Since f(∆(n)N) = ∆(n)M, f[N] = {∆(n)M ∶ n ∈ N}. But then wM ∉ f[N] and
thus f is not surjective, a contradiction. �

3.F. Applications to combinatorics

In this section we give one application of the Compactness theorem to combinatorics, but
many more are given as homework problems.

The following is the most basic and well known theorem of infinite combinatorics. For a
set S, let [S]2 denote the set of two element subsets of S (think of it as the set of edges of the
undirected complete graph on S). Given a 2-coloring of [N]2, i.e. a function c ∶ [N]2 → {0,1},
a set E ⊆ [N]2 is said to be monochromatic if all elements of E have the same color, i.e. c⇂E
is constant. A set A ⊆ N is called monochromatic if [A]2 is monochromatic.

Theorem 3.17 (Infinite Ramsey). For any 2-coloring of [N]2, there exists an infinite
monochromatic subset of N.

Proof. For a ∈ N and A ⊆ N, put (a,A) = {{a, a′} ∶ a′ ∈ A ∖ {a}}. Set A0 = N and take
sequences an ∈ N and An ⊆ N satisfying:

(i) an ∈ An,
(ii) An+1 ⊆ An is infinite and (an,An+1) is monochromatic.

It is easy to see that such sequences (an)n∈N and (An)n∈N exist (define them recursively). Call
an red if all elements of (an,An+1) have color 0, otherwise call it blue. Clearly, there is a sub-
sequence (ank

)k∈N with all ank
having the same color (red or blue). Now it is straightforward

to check that A = {ank
}k∈N is monochromatic. �

We now derive the Finite Ramsey theorem from this using the Compactness theorem. The
original combinatorial proof is much messier (look it up).

Let n̄ = {0,1, ..., n − 1}.

Theorem 3.18 (Finite Ramsey). For every m ∈ N, there exists n ∈ N such that for any
2-coloring of [n̄]2, there exists a monochromatic subset A ⊆ n̄ of cardinality m.

Proof. Let τ be the signature containing constant symbols cn, for every n ∈ N, and a binary
relation symbol R (think of R as a symbol for coloring: the color of {x, y} is 1 if R(x, y)
and 0 otherwise). Fix m ∈ N, and for each n ∈ N, let φn be a τ -sentence expressing that
{c0, c1, ..., cn−1} does not have a monochromatic subset of cardinality m (there are only finitely
many such subsets, so we can express it).

Now assume for contradiction that for any n, there is a 2-coloring of [n̄]2 such that n̄ has
no monochromatic subsets of cardinality m. Thus the theory T = {φn ∶ n ∈ N} is finitely
satisfiable and hence has a model M. Let C = {cMn ∶ n ∈ N}. By Infinite Ramsey theorem, C
has an infinite monochromatic subset A, i.e. either for all distinct a, a′ ∈ A, RM(a, a′) or for

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 27

all distinct a, a′ ∈ A, ¬RM(a, a′). Let n be large enough so that A ∩ {ci ∶ i < n} has at least
m elements. Then it is clear that M ⊭ φn, a contradiction. �

Remark 3.19. Mathematicians sometimes refer to this kind of arguments as “compactness
and contradiction arguments”. Now that we have learnt the Compactness theorem, we can
just say “by the Compactness theorem” as opposed to “by a compactness and contradiction
argument”.

4. Complete theories

As mentioned above, it is easy to see that every consistent theory has a (consistent)
completion. So why don’t we only consider complete theories and not have to deal with
the issues that come with incomplete theories? For example, why don’t we just work with
Th(N) instead of PA? The problem is that it is hard (in a very precise sense) to check
whether a given statement is an axiom of Th(N) or not. For example, is the Twin Prime
Conjecture in Th(N)? We wish we knew. The whole point of mathematics is to derive
complicated statements from “easy-to-verify” axioms. We will see in the next section that
“easy-to-verify” means that we can write a computer program that checks whether a given
sentence is an axiom or not. For example, all of the theories in Examples 2.25 satisfy this
criterion.

Now the question is: having defined some reasonable theory, like ACFp, is it complete? In
other words, are these axioms enough to capture the first-order essence of say algebraically
closed fields of characteristic p? In this section we develop a sufficient condition for verifying
completeness, using which we show that ACFp is complete.

4.A. The Loś-Vaught test

Definition 4.1. Let κ be a cardinal. A τ -theory T is called κ-categorical if any two models
of T of cardinality κ are isomorphic. We say that T is uncountably categorical if it is
κ-categorical for some uncountable cardinal κ.

Examples 4.2.

(a) The theory VECQ of vector spaces over Q is uncountably categorical; in fact, it is
κ-categorical, for every uncountable cardinal κ.

Proof. This is by virtue of the fact that every vector space has a basis and to construct
an isomorphism between vector spaces it is enough to find a bijection between their
bases. Details to be added. �

(b) Let DLO be the theory of dense linear orderings without endpoints, i.e. DLO comprises
of the following axioms in the signature τ = (<):

(i) Antireflexivity: ∀x(x ≮ x)
(ii) Antisymmetry4: ∀x∀y(x < y → y ≮ x)

(iii) Transitivity: ∀x∀y∀z[(x < y ∧ y < z)→ x < z]

(iv) Linearity: ∀x∀y[(x ≠ y ∧ x ≮ y)→ y < x]

(v) Density: ∀x∀y[x < y → ∃z(x < z < y)]

4This is redundant since it follows from antireflexivity and transitivity.

28 ANUSH TSERUNYAN

(vi) No endpoints: ∀x∃y∃z(y < x < z)
It is not hard to show that DLO is ℵ0-categorical and hence (Q,<) is the only (up

to isomorphism) countable dense linear ordering without end points. We leave proving
this as an exercise.

(c) For a finite τ -structure A, Th(A) is absolutely categorical, i.e. any two models B,B′ ⊧
Th(A) are isomorphic.

We will see shortly that an argument similar to that for vector spaces shows that ACFp is
κ-categorical as well (for every uncountable cardinal κ).

Proposition 4.3 (Loś-Vaught test). Let T be a τ -theory that has an infinite model. If T is
κ-categorical for some κ ≥ max{∣τ ∣,ℵ0}, then T is complete.

Proof. Let A,B ⊧ T and we need to show that A ≡ B, by Proposition 3.2. By the weak
version of Löwenheim-Skolem (3.13), there are A′ ⊧ Th(A) and B′ ⊧ Th(B) such that ∣A′∣ =
κ = ∣B′∣. Since T is κ-categorical, A′ ≅ B′ and hence A′ ≡ B′. Thus A ≡ A′ ≡ B′ ≡ B. �

This immediately gives that the theories VECQ and DLO are complete.

One cannot help mentioning the following very important theorem that started the modern
model theory:

Theorem (Morley, 1965). Let T be a theory in a countable signature τ . If T is uncountably
categorical, then it is κ-categorical for every uncountable cardinal κ.

Thus it is not a coincidence that the theory of vector spaces is κ-categorical for all un-
countable cardinals κ. The proof of this theorem is far outside the realm of this course, but
it is worth mentioning that the most important ingredient of it is showing that if a structure
is such that all of its definable sets are either finite or cofinite (complement is finite), then
it admits a “basis” similar to the vector space basis, and so one can use the same argument
as for vector spaces to construct isomorphisms.

Lastly, we would like to mention the following long standing open problem that, although
being model-theoretic in nature, has been best understood (but not completely solved) in
the context of descriptive set theory:

Vaught’s conjecture. Let τ be a countable signature and T be a complete τ -theory having
infinite models. If T has uncountably many nonisomorphic countable models, does it have
continuum many nonisomorphic countable models?

4.B. Algebraically closed fields and the Lefschetz Principle

We now aim at satisfying the conditions of the Loś-Vaught test for ACFp.

Lemma 4.4. Every algebraically closed field is infinite.

Proof. For any finite field F = {a1, ..., an}, the polynomial (x− a1)(x− a2)...(x− an)+ 1 does
not have a root in F . Thus F is not algebraically closed. �

The proof of the following is similar to that of the theory of vector spaces being uncountably
categorical, and can be safely omitted by the reader if (s)he does not feel like remembering
field theory.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 29

Proposition 4.5. For p prime or 0, ACFp is κ-categorical for any uncountable cardinal κ.

Proof. Let K1,K2 ⊧ ACFp with ∣K1∣ = ∣K2∣ = κ. For i = 1,2, let Fi be the base field of Ki, i.e.
the substructure of Ki generated by ∅. (If p = 0, then Fi is a copy of Q; otherwise it is a
copy of Z/pZ.) Since F1 and F2 are clearly isomorphic (as rings), we can assume without loss
of generality that F1 = F2 =∶ F . Let Bi be transcendence base over F in Ki. (Transcendence
base is a maximal collection of algebraically independent elements over F .) Now it is not

hard to see that Ki = F (Bi), where F (Bi) denotes the field generated by Bi over F and

F (Bi) denotes its algebraic closure in Ki.
Thus, because F is countable, ∣Ki∣ = ∣Bi∣ ⋅ ℵ0 + ∣F ∣. If Bi is countable then so is ∣Bi∣ ⋅ ℵ0,

but Ki is uncountable, and hence Bi is uncountable. Then, by basic cardinal arithmetic,
∣Bi∣ ⋅ ℵ0 + ∣F ∣ = ∣Bi∣ and so κ = ∣Ki∣ = ∣Bi∣. Hence, there is a bijection f ∶ B1 → B2. This f
uniquely extends to an isomorphism of F (B1) onto F (B2), which in its turn extends (not

necessarily uniquely) to an isomorphism of K1 = F (B1) onto K2 = F (B2). �

Corollary 4.6. ACFp is complete, for any p prime or 0.

Proof. Follows from 4.4, 4.5 and the Loś-Vaught test (4.3). �

The following was once just a principle (a belief) in algebraic geometry, but it was later
on formalized and turned into a theorem by A. Robinson (who was by the way a professor
at UCLA):

Theorem 4.7 (Lefschetz Principle). Let C = (C,0,1,+,−, ⋅). For a τring-sentence φ the
following are equivalent:

(1) C ⊧ φ.
(2) K ⊧ φ, for some K ⊧ ACF0.
(3) ACF0 ⊧ φ.
(4) For sufficiently large primes p, ACFp ⊧ φ.
(5) For infinitely many primes p, there is K ⊧ ACFp such that K ⊧ φ.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3): Follows from the completeness of ACF0.
(3) Ô⇒ (4): ACF0 ⊧ φ implies ACF0 ⊢ φ by the Completeness theorem. Hence, because
proofs are finite, there is a finite T ⊆ ACF0 such that T ⊢ φ. But then, by the definitions of
ACF0 and ACFp, for sufficiently large prime p, T ⊆ ACFp. Thus ACFp ⊢ φ and hence ACFp ⊧ φ.

(4) Ô⇒ (5): Trivial.
(5) Ô⇒ (3): We prove the contrapositive: assume (3) fails. But then ACF0 ⊧ ¬φ and

hence, by (3) Ô⇒ (4), for sufficiently large primes p, ACFp ⊧ ¬φ. Therefore (5) is false. �

4.C. Reducts of arithmetic

Definition 4.8. Let T be a τ -theory. A τ -theory T ′ is called an axiomatization for T if for
all τ -sentences,

T ⊢ τ ⇐⇒ T ′ ⊢ φ.

PA was constructed as an attempt to “conveniently” axiomatize Th(N), where “conve-
nient” means that there is a computer program recognizing the axioms (we will make this
more in the next section). However, as we will see, Gödel’s Incompleteness theorem states
that PA is incomplete. In fact, there is no convenient axiomatization for Th(N), i.e. any
subtheory T ⊆ Th(N) is either incomplete or inconvenient.

30 ANUSH TSERUNYAN

What about reducts of N? Does the theory of (N,0, S) or even of (N,0, S,+) admit a con-
venient axiomatization? In other words, where is the boundary of incompleteness? It turns
out that unlike N, the theories of (N,0, S) and (N,0, S,+) admit convenient axiomatizations,
and this is what we will focus on in this subsection.

We start with NS ∶= (N,0, S). Let τS = (0, S). Here is our first (and last) attempt of
axiomatizing Th(NS). Let theory TS consist of the following axioms:

(S1) Zero has no predecessor: ∀x(S(x) ≠ 0).
(S2) The successor function is one-to-one: ∀x∀y(S(x) = S(y)→ x = y).
(S3) Any nonzero number is a successor of something: ∀x(x ≠ 0→ ∃y(x = S(y))).
(S4) For all n ∈ N, there are no n-loops: ∀x(Sn(x) ≠ x), where Sn stands for the n-fold

composition of S.

Note that (S4) is an axiom schema, i.e. it contains an axiom for every n ∈ N; in particular,
TS is infinite.

It is clear that any model M of TS has a standard part N̄ = {∆(n)M ∶ n ∈ N}, where
∆(n) ∶= Sn(0). Define a binary relation ∼ on M as follows: for all a, b ∈M ,

a ∼ b ⇐⇒ if for some n ∈ N, M ⊧ Sn(a) = b or M ⊧ Sn(b) = a.

If a is standard, i.e. a ∈ N̄, then the equivalence class [a] of a is exactly N̄. If a ∈ M is
nonstandard, then [a] does not have a least element (why?) and hence looks like a Z-chain:

...→ ∗→ a→ SM(a)→ SM(SM(a))→ ...

Thus M is a union of N̄ and a bunch of Z-chains. Let ΛM denote the set of Z-chains in
M and put λM = ∣ΛM∣. Then ∣M ∣ = ∣N∣ + λM ⋅ ∣Z∣ and hence, by basic cardinal arithmetic,
M has cardinality λM unless λM is finite, i.e. ∣M ∣ = max{λM,ℵ0}. In particular, if M is
uncountable, then ∣M ∣ = λM.

Proposition 4.9. TS is κ-categorical, for any uncountable cardinal κ.

Proof. Let A,B ⊧ TS with ∣A∣ = ∣B∣ = κ. By above, λA = ∣A∣ = κ = ∣B∣ = λB. Thus, there is a
bijection f ∶ ΛA → ΛB. Now the standard parts of A and B are clearly isomorphic. Moreover,
any Z-chain C ∈ ΛA is isomorphic to f(C) because any two Z-chains are clearly isomorphic.
Thus, combining all these individual isomorphisms together, we get an isomorphism of A
onto B. �

From this and the Loś-Vaught test, we get

Corollary 4.10. TS is complete.

Now we turn to N+ ∶= (N,0, S,+). Let τ+ = (0, S,+) and let T+ be the theory consisting of
all of the axioms of PA except for the ones involving multiplication (hence it is a convenient
theory). The proof of the following theorem will be omitted since it uses the technique of
quantifier elimination, which is not covered in these notes.

Theorem 4.11 (Presburger, 1929). T+ is complete.

Thus, as we will see, the incompleteness phenomenon starts with N = (N,0, S,+, ⋅).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 31

5. Incomplete theories

We start with an informal definition, which we will formalize later on.

Definition 5.1 (Informal). A τ -theory T is called recursive if there is a computer program
such that given a τ -sentence φ, it returns YES if φ ∈ T , and NO otherwise.

We saw in the previous section that the theories of (N,0, S) and (N,0, S,+) admit prim-
itive recursive axiomatizations. However, the situation changes once we add multiplication
because it enables prime numbers and makes it possible to code tuples of natural numbers
into a single number, and we have the following ground-breaking theorem:

Theorem 5.2 (Incompleteness; Gödel, 1931). Any recursive theory T ⊆ Th(N) is incom-
plete. In particular, PA is incomplete.

This section is devoted to the proof of several versions of this theorem and some of its
consequences, as well as making the definition of primitive recursive precise.

5.A. Sketch of proof of the Incompleteness theorem

Below, we sketch the proof of the Incompleteness theorem stated above to make the idea of
the proof apparent and not get lost in the technical details that one has to go through in
order to rigorously prove the theorem.

Definition 5.3 (Informal). A function f ∶ Nk → N is called recursive if there is a computer
program such that given a⃗ ∈ Nk as input, it outputs f(a⃗). A set/relation A ⊆ Nk is called
recursive if so is its indicator function.

First thing one shows is that recursive functions are arithmetical. Thus any function we
can write a computer program for is expressible in the language of arithmetic.

For a finite signature τ , whose symbols are s0, ...sn we enumerate the symbols of FOL(τ)
as follows:

s0 s1 ... sn = ¬ ∧ ∨ → ∀ ∃ , () v0, v1, v2, ...

and call the index of a symbol its code. For example, the code of s0 is 0, the code of = is
n + 1 and the code of vi is n + 11 + i. Using prime numbers and the fact that prime number
factorization is unique, we can code a tuple of natural numbers into a single natural number
(⟨n1, ..., nk⟩ = p

n1+1
1 ⋅ ... ⋅ pnk+1

k), and so we can code formulas since they are just tuples of
symbols of FOL(τ). In fact, we can make sure that the coding and decoding operations are
recursive (think of computer programs that would do this).

Thus let ⌜t⌝ and ⌜φ⌝ denote the codes of a τ -term and a τ -formula φ, respectively. It is
now not hard to see that a τ -theory T is recursive if and only if the set of codes of its axioms
is recursive (as a subset of N).

Now let τ be the signature of arithmetic, i.e. τ = τa, and thus we have the above coding
since τa is finite. For every n ∈ N, set ∆(n) = Sn(0). It is tedious but straightforward to
show that there is a recursive function Sub0 ∶ N2 → N such that for any τa-formula φ in which
v0 is not quantified, and for any m ∈ N,

Sub0(⌜φ⌝,m) = ⌜φ(∆m/v0)⌝.

In words, this function takes m and the code of φ, and returns the code of the formula
obtained from φ by replacing all occurrences of v0 by the term ∆m.

32 ANUSH TSERUNYAN

As mentioned above, all recursive functions are arithmetical. Hence, there is a τa-formula
Sub0(x, y, z) such that for all a, b, c ∈ N,

Sub0(a, b) = c ⇐⇒ N ⊧ Sub0(a, b, c).

Without loss of generality, we can assume v0 is not quantified in Sub0(x, y, z).

Lemma 5.4 (Fixed point for N). For each τa formula φ(v) there is a τa-sentence θ such
that

N ⊧ θ↔ φ(⌜θ⌝).

Proof. Put ψ(v0) ≡ ∃z(Sub0(v0, v0, z) ∧ φ(z)) and e = ⌜ψ(v0)⌝. Now we feed ψ(v0) its own
code by letting θ ≡ ψ(∆e), and thus Sub0(e, e) = ⌜ψ(∆(e))⌝ = ⌜θ⌝. Now magic happens:

N ⊧ θ ⇐⇒ N ⊧ ψ(e)

⇐⇒ N ⊧ ∃z(Sub0(e, e, z) ∧ φ(z))

⇐⇒ there exists b ∈ N such that b = sub(e, e) and N ⊧ φ(b)

⇐⇒ N ⊧ φ(⌜θ⌝).

If you feel cheated, join the club. �

This lemma says that every unary arithmetical relation φ(v) asserts of (the code of)
some sentence θ exactly what θ asserts about N. It enables self-reference in the language
of arithmetic, using which we can express the Liar Paradox (i.e. Cantor’s diagonalization
method), which is what lies at the heart of the proof of the Incompleteness theorem.

As an immediate corollary we get the following result that is actually stronger than the
Gödel’s Incompleteness theorem:

Theorem 5.5 (Tarski, 1939). Th(N) is not arithmetical, i.e. the set ⌜Th(N)⌝ ∶= {⌜φ⌝ ∶ φ ∈
Th(N)} is not definable in N.

Proof. Left as a homework problem. �

Because formal proofs are just finite sequences of formulas, we can code them using the
operation of coding n-tuples. Given a recursive τa-theory T , it is straightforward to check
that the following relation is recursive if such is T : for a, e ∈ N,

ProofT (a, e) ⇐⇒ a is a code of a τa-formula φ and e is a code of a proof of φ from T .

To write a program for this, one has to check the definition of the formal proof, i.e. that
every formula in the finite sequence coded by e is either an axiom of FOL(τa), or belongs to
T (this is where we need T to be recursive), or can be obtained from the previous formulas
in the sequence by applying one of the three operations: Modus Ponens, Generalization or
∃-elimination.

As before, since all recursive functions are arithmetical, there is a τa-formula ProofT (x, y)
such that for all a, b ∈ N,

ProofT (a, b) ⇐⇒ N ⊧ ProofT (a, b).

Given this, we have a τa-formula defining the relation of provability in N:

ProvableT (x) ≡ ∃yProofT (x, y),

and hence, for any τ -formula φ,

φ is provable in T ⇐⇒ N ⊧ ProvableT (⌜φ⌝).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 33

Proof of the Incompleteness theorem 5.2. Applying the Fixed Point lemma to

φ(v) ≡ ¬ProvableT (v),

we get a τa-sentence γT such that

N ⊧ γT ↔ ¬ProvableT (⌜γT ⌝).

The Gödel sentence γT says about itself that it is not provable in T (just like in the Liar
Paradox, the liar says “I am a liar”). Hence, we have

N ⊧ γT ⇐⇒ N ⊧ ¬ProvableT (⌜γT ⌝)

⇐⇒ for all e ∈ N,N ⊧ ¬ProofT (⌜γT ⌝, e)

⇐⇒ for all e ∈ N, e is not a code of a proof of γT

⇐⇒ T ⊬ γT .

This equivalence implies that N ⊧ γT since otherwise, T ⊢ γT and γT ∉ Th(N), which
contradicts T ⊆ Th(N). Thus, again by the equivalence above, T ⊬ γT . It also cannot be
that T ⊢ ¬γT since N ⊧ T and N ⊧ γT . �

Here is another proof of the Incompleteness theorem that is shorter but nonconstructive:

Another proof of the Incompleteness theorem 5.2. If T was recursive and complete, then the
formula ProvableT (x) would define the set ⌜Th(N)⌝ in N because, by the completeness of
T , for every sentence φ, φ is provable from T if and only if ⌜φ⌝ ∈ ⌜Th(N)⌝. Thus ⌜Th(N)⌝
would be arithmetical, contradicting Tarski’s theorem (5.5). �

For the rest of the section, we will be occupied with making the notion of recursive precise
and developing tools for proving a stronger version of Gödel’s Incompleteness theorem that
applies not only to subtheories of Th(N), but also to theories (in an arbitrary finite signature
τ), which have PA “encoded” in them; for example, PA ∪ {¬γPA} and ZFC.

5.B. A quick introduction to recursion theory

In this subsection we give a model (of computation) to capture intuitive notions such as
algorithm, computable functions, etc. It is a general belief, known as the Church-Turing
thesis, that this model captures the mentioned notions pretty well. One evidence of it is
that it is very robust in the sense that all other seemingly different models of computation
that people had defined turned out to be equivalent.

Definition 5.6 (Search operation). For a unary relation R ⊆ N, define µx(R(x)) as the
smallest x ∈ N for which R(x) holds, if such x exists, and it is undefined, otherwise. In the
latter case, we write µx(R(x)) =⊥.

For example, µx(x2 > 7) = 3. This operation is also called minimalization.

Definition 5.7 (Recursive functions). A function f ∶ Nk → N is called recursive (or com-
putable) if it is obtained by inductively applying the following rules:

(R1) ● + ∶ N2 → N and ⋅ ∶ N2 → N are recursive;
● χ≤ ∶ N2 → N is recursive, where χ≤ is the characteristic function of ≤, i.e. χ≤(x, y) =

1 if x ≤ y, and 0, otherwise;

34 ANUSH TSERUNYAN

● The projection functions P n
i (x1, ..., xn) = xi are recursive, for all i = 1, ..., n and

n ∈ N;
(R2) Composition: if g ∶ Nm → N and h1, ..., hm ∶ Nk → N are recursive, then so is the

composition function f = g(h1, ..., h2) ∶ Nk → N defined by

f(a⃗) = g(h1(a⃗), ..., hm(a⃗));

(R3) Well-defined search: if g ∶ Nn+1 → N is recursive and for all a⃗ ∈ Nn there is x ∈ N with
g(a⃗, x) = 0, then the function f ∶ Nn → N defined by

f(a⃗) = µx(g(a⃗, x) = 0)

is recursive.

A relation R ⊆ Nn is called recursive if so is its characteristic function χR ∶ Nn → N.

Although the class of recursive functions is obtained by closing the set of functions in
(R1) under operations (R2) and (R3), it is closed under many other operations. The most
important among those is the operation of primitive recursion, which is often included in
the definition of recursive functions. However, we prefer showing that it is a consequence of
the definition rather than including it in the latter since keeping the definition minimalistic
makes it easier to prove that the class of recursive functions is contained in other classes of
functions (less cases to consider).

The following proposition provides some closure properties of the class of recursive func-
tions together with some examples.

Lemma 5.8.

(a) The relations ≥,= are recursive.
(b) Constant functions Cn

k ∶ Nn → N are recursive, where Cn
k (a⃗) = k, for all a⃗ ∈ Nn.

(c) The successor function S ∶ N→ N is recursive.
(d) If n-ary relations P,Q on Nn are recursive, then so are the following

¬P ∶= Nn ∖ P,P ∧Q ∶= P ∩Q,P ∨Q ∶= P ∪Q.

(e) (Definition by Cases) Let R1, ..., Rk ⊆ Nn be recursive such that for each a⃗ ∈ Nn exactly
one of R1(a⃗), ...,Rk(a⃗) holds, and suppose that g1, ..., gk ∶ Nn → N are recursive. Then
g ∶ Nn → N given by

g(a⃗) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g1(a⃗) if R1(a⃗)
⋮ ⋮
gk(a⃗) if Rk(a⃗)

.

is recursive.

Proof. For (a), let note that χ≥(x, y) = χ≤(P 2
2 (x, y), P

2
1 (x, y)) and χ=(x, y) = χ≤(x, y) ⋅

χ≥(x, y).
We prove (b) by induction on k. For k = 0, observe that cn0(a⃗) = µx(P n+1

n+1 (a⃗, x) = 0).
Assume cnk is recursive and note that

cnk+1(a⃗) = µx(c
n
k(a⃗) < x) = µx(χ≥(c

n+1
k (a⃗, x), P n+1

n+1 (a⃗, x)) = 0).

For (c), just note that S(a) = a + c11(a).
For (d), observe that ¬P (a⃗) ⇐⇒ χP (a⃗) = cn0(a⃗) and χP∧Q(a⃗) = χP (a⃗) ⋅ χQ(a⃗). Thus

¬P and P ∧ Q are recursive if so are P and Q. Recursiveness of the rest of the Boolean
combinations follows from this because they are expressible in terms of ∧ and ¬.

Part (e) is left to the reader. �

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 35

Lemma 5.9. Let R ⊆ Nn+1 be recursive such that for all a⃗ ∈ Nn there exists x ∈ N with
(a⃗, x) ∈ R. Then the function f ∶ Nn → N given by

f(a⃗) = µxR(a⃗, x)

is recursive.

Proof. Note that f(a⃗) = µx(χ¬R(a⃗, x) = 0). �

Using this we get the following convenient property for verifying recursiveness of functions:

Proposition 5.10 (Graph property). Let f ∶ Nn → N. Then f is recursive if and only if so
is its graph (as a subset of Nn+1).

Proof. let R ⊆ Nn+1 be the graph of f . Then for all a⃗ ∈ Nn and b ∈ N,

R(a⃗, b) ⇐⇒ f(a⃗) = b,

and hence

f(a⃗) = µxR(a⃗, x),

from which the proposition follows immediately. �

Definition 5.11. Let g ∶ Nk → N and h ∶ Nk+2 → N. We say that f ∶ Nk+1 → N is defined by
primitive recursion from g, h if for all a⃗ ∈ Nn and n ∈ N,

f(a⃗,0) = g(a⃗)

f(a⃗, n + 1) = h(a⃗, n, f(a⃗, n))

We aim at showing that the class of recursive functions is closed under this operation. For
that, we first convert the recursive definition into an explicit (iterative) one as follows.

Proposition 5.12 (Dedekind’s analysis of recursion). If f ∶ Nk+1 → N is defined by primitive
recursion from g, h as in 5.11, then for all a⃗ ∈ Nk, n ∈ N and w ∈ N,

f(a⃗, n) = w ⇐⇒ there exists a sequence (w0, ...,wn) such that

w0 = g(a⃗) ∧ (∀i < n)[wi+1 = h(a⃗, i,wi)] ∧wn = w.

Proof. Obvious. �

To be able to express the right hand side of Dedekind’s analysis of recursion, we need to
be able to recursively code and decode tuples of natural numbers of arbitrary length into a
single natural number. We do it using the

Chinese Remainder Theorem 5.13. Let d0, ..., dn be pairwise coprime and put d = d0d1...dn.
Then the natural projection map

h ∶ Z/dZ→ Z/d0Z × ... ×Z/dnZ

defined by

[a]d ↦ ([a]d0 , ..., [a]dn)

is a well-defined group isomorphism.

36 ANUSH TSERUNYAN

Proof. That h is well-defined follows from the fact that every di divides d, and that h is a
homomorphism follows from the fact that the remainder function respects addition. Since
the groups on the left and right of the homomorphism have the same number of elements,
by Pigeon Hole Principle, we only have to show that h is injective. To this end, assume that
h([a]d) = 0. Thus every di divides a and hence d divides a because di are pairwise coprime.
Therefore, [a]d = 0 and hence ker(h) is trivial. �

Lemma 5.14.

(a) If relation R ⊆ Nk+1 is recursive, then so are the relations

P (a⃗, y) ⇐⇒ ∃x<yR(a⃗, x),Q(a⃗, y) ⇐⇒ ∀x<yR(a⃗, x),

for all a⃗ ∈ Nk, y ∈ N.
(b) The function � ∶ N2 → N defined by n �m = max{n −m,0} is recursive.
(c) The remainder function Rem ∶ N2 → N, defined by (a, b) ↦ the remainder of a when

divided by b, is recursive.
(d) The function Pair ∶ N2 → N defined by

(x, y)→
(x + y)(x + y + 1)

2
+ x

is a recursive bijection.
(e) The functions Left, Light ∶ N→ N defined by

Pair(x, y) = z ⇐⇒ Left(z) = x ∧ Right(z) = y

are recursive.

Proof. We leave parts (a),(b) and (c) to the reader. For (d), Pair(x, y) = µz(2z � (x + y)(x +
y + 1) = 0) + x and hence is recursive. It is a bijection because it enumerates pairs (x, y) as
follows:

(0,0)
²
x+y=0

(0,1)(1,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x+y=1

(0,2)(1,1)(2,0)
´¹¹¹¸¹¹¹¶

x+y=2

...

For (e), observe that Left(z) = µx(∃y<z+1Pair(x, y) = z) and similarly for Right. �

Lemma 5.15 (Gödel’s β-function). The function β ∶ N2 → N defined by

β(w, i) = Rem(Left(w),1 + (i + 1)Right(w))

is recursive and has the property that for every sequence (w0, ...,wn), there exists w ∈ N such
that for all i ≤ n,

β(w, i) = wi.

Proof. The fact that β is recursive follows from 5.14, so we prove the second statement. Let
s = max{n,w0,w1, ...,wn}, set b = s! and verify that

d0 = 1 + (0 + 1)b, d1 = 1 + (1 + 1)b, ..., dn = 1 + (n + 1)b

are pairwise coprime as follows: if a prime p divides 1 + (i + 1)b and 1 + (j + 1)b, for i < j,
then it divides their difference (j − i)b = (j − i)s!. Since j − i ≤ n ≤ s, p must divide s! = b,
contradicting p dividing 1 + (i + 1)b.

By the Chinese Remainder Theorem, there is a < d0 ⋅ ... ⋅dn such that Rem(a, di) = wi. Thus
setting w = Pair(a, b), we get

wi = Rem(a, di) = Rem(Left(w),1 + (i + 1)Right(w)) = β(w, i).

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 37

�

Using Gödel’s β-function, we define the following coding/decoding tuples functions, which
are clearly recursive:

● ⟨a0, ..., an−1⟩ ∶= µx(β(x,0) = n ∧ ⋀ni=1 β(x, i) = ai−1). Note that <>= 0 (as a nullary
function).

● lh ∶ N→ N by lh(a) = β(a,0).
● (a)i ∶= β(a, i + 1). Note that (⟨a0, ..., an−1⟩)i = ai.
● InitSeg(a, i) = µx(lh(x) = i∧∀j<i(x)j = (a)j). Thus InitSeg(⟨a0, ..., an⟩, i) = ⟨a0, ...ai−1⟩.
● a ∗ b = µx(lh(x) = lh(a) + lh(b) ∧ ∀i<lh(a))(x)i = (a)i ∧ ∀i<lh(b))(x)lh(a)+i = (b)i. Thus

⟨a0, ...an−1⟩ ∗ ⟨b0, ...bm−1⟩ = ⟨a0, ...an−1, b0, ..., bm−1⟩.

Proposition 5.16. Recursive functions are closed under the operation of primitive recursion,
i.e. if g, h, f are as in Definition 5.11 and g, h are recursive, then so is f .

Proof. We implement Dedekind’s analysis of recursion as follows. Define an auxiliary func-
tion f̃ ∶ Nk+1 → N by

f̃(a⃗, n) = µx(lh(x) = n + 1 ∧ (x)0 = g(a⃗) ∧ ∀i<n(x)i+1 = h(a⃗, i, (x)i)),

and note that f(a⃗, n) = (f̃(a⃗, n))n. Since f̃ is clearly recursive, so is f . �

Primitive recursion enables us to show that any function that admits a recursive definition
is recursive. E.g. n→ 2n is recursive because

{
20 = 1

2n+1 = 2 ⋅ 2n
.

We now define a nice subclass of recursive functions, namely that of primitive recursive
functions, which is still rich enough to contain most of the functions that can be implemented
as computer programs. In fact, most of the recursive functions mentioned so far are actually
primitive recursive.

Definition 5.17. The class of primitive recursive functions is the smallest class containing
the successor function S ∶ N → N, the constant functions Cn

k ∶ Nn → N, k,n ∈ N and the
projection functions P n

i (x1, ..., xn) = xi, i ≤ n,n ∈ N, and is closed under composition and
primitive recursion. A relation R ⊆ Nn is called primitive recursive if so is its characteristic
function χR ∶ Nn → N.

The reader can verify that the functions in (R1) of the definition of recursive functions are
primitive recursive. It is also easy to check that Lemma 5.8 holds with recursive replaced
by primitive recursive.

The following makes it easy to verify that Lemmas 5.14 and 5.15 also hold with recursive
replaced by primitive recursive.

Lemma 5.18 (Bounded search). Let R ⊆ Nn+1 be a recursive relation. Then the function
f ∶ Nn+1 → N defined by f(a⃗, y) = µx<yR(a⃗, x) is primitive recursive, where

µx<yR(a⃗, x) = {
µxR(a⃗, x) if ∃x<yR(a⃗, x)
y otherwise

.

38 ANUSH TSERUNYAN

Proof. We define f(a⃗, y) by primitive recursion as follows: let f(a⃗,0) = 0 and

f(a⃗, y + 1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f(a⃗, y) if f(a⃗, y) < y
y if f(a⃗, y) = y ∧R(a⃗, y)
y + 1 otherwise

.

�

The proof of 5.15 yields a primitive recursive function B ∶ N → N, defined by B(N) =

∏i<n(1 + (1 + i)N !), such that for every n ∈ N and a⃗ ∈ Nn,

whenever N ≥ max{n, a0, ..., an−1}, there is a < B(N) such that β(a, i) = ai, ∀i < n.

Using this together with 5.18 one can easily show that the coding/decoding functions
⟨a0, ..., an−1⟩, lh(a), (a)i, InitSeg(a, i), a ∗ b are primitive recursive.

The following lemma allows recursive definitions using all previously computed values of
a function as opposed to only the last computed value.

Lemma 5.19 (Complete primitive recursion). For f ∶ Nn+1 → N, let

f̄(a⃗, n) = ⟨f(a⃗,0), ..., f(a⃗, n − 1)⟩.

Then:

(a) f is primitive recursive if and only if f̄ is primitive recursive.
(b) If g ∶ Nk+1 → N is primitive recursive, then so is f ∶ Nk+1 → N defined by f(a⃗, n) =

g(a⃗, f̄(a⃗, n)).

Proof. We prove part (a) and leave (b) to the reader.
⇐: Put f(a⃗, n) = (f̄(a⃗, n + 1))n.
⇒: We define f̄(a⃗, n) by primitive recursion as follows:

{
f̄(a⃗,0) = <>

f̄(a⃗, n + 1) = f̄(a⃗, n) ∗ ⟨f(a⃗, n)⟩
.

�

One may ask if there are any recursive functions that are not primitive recursive. The
answer is YES (of course) and here is why:

Proposition 5.20. There exists a recursive function φ ∶ N2 → N such that φn ∶= φ(n, ⋅)
enumerates all the primitive recursive functions (possibly with repetitions), i.e. for every n,
φn is primitive recursive and for every primitive recursive function f , there is n such that
f = φn. Moreover, any such function φ is not primitive recursive.

Proof. A proof of the existence of such φ is outlined in one of the homework problems and
here we show that such φ is not primitive recursive by applying Cantor’s diagonalization5

method. Assume for contradiction that φ is primitive recursive. Then so is the function
ψ(n) = φ(n,n) + 1, for all n, and thus there is n0 ∈ N such that φn0 = ψ. But then we have

ψ(n0) = φn0(n0) = φ(n0, n0)

on one hand, and
ψ(n0) = φ(n0, n0) + 1

on the other, which is a contradiction. �

5As van den Dries suggests, perhaps antidiagonalization would be a better name.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 39

Note that the same proof shows that there is no recursive enumeration of recursive func-
tions. Similarly, the set of codes of recursive functions is not recursive, i.e. there is no
recursive binary relation R such that for any unary recursive relation Q there is n such that
for all x,

Q(x) ⇐⇒ R(n,x).

This is known as the undecidability of the halting problem.

Here is a more concrete and important example of a recursive function that is not primitive
recursive:

Definition 5.21. Ackermann function is the function A ∶ N2 → N inductively defined as
follows:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A(0, x) = x + 1
A(n + 1,0) = A(n,1)

A(n + 1, x + 1) = A(n,A(n + 1, x))
.

The proof that this function is recursive but not primitive recursive is left as a home-
work problem together with the proof that the graph of this function is primitive recursive.
The last fact shows that the graph property (Proposition 5.10) does not hold for primitive
recursive functions.

5.C. Representability in Robinson’s system Q

In the sketch of the proof of the Incompleteness theorem above, we used the fact that recursive
functions are arithmetical, i.e. definable in N. Thus the proof only applied to theories that
N satisfies. If we want to prove incompleteness for other theories, like PA ∪ {¬γPA}, we have
to develop a notion of definability inside a theory rather than a structure. This is what the
following definition is supposed to capture.

Definition 5.22 (Representability). Let T be a theory in the signature τa of arithmetic.

● We say that a relation R ⊆ Nn is representable in T if there is a formula φ(x⃗) such that
for all a⃗ ∈ Nn,

R(a⃗) Ô⇒ T ⊢ φ(∆(a⃗)) and ¬R(a⃗) Ô⇒ T ⊢ ¬φ(∆(a⃗)),

where ∆(a⃗) = (∆(a1), ...,∆(an)). Such φ is said to represent the relation R in T .
● We say that a function f ∶ Nn → N is representable in T if there is a formula φ(x⃗, y) such
that for all a⃗ ∈ Nn,

T ⊢ φ(∆(a⃗), y)↔ y = ∆(f(a⃗)).

Such φ is said to represent the function f in T .
● A τa-term t(x⃗) is said to represent the function f ∶ Nn → N in T if for all a⃗ ∈ Nn,

T ⊢ t(∆(a⃗)) = ∆(f(a⃗)).

The following shows that we could have defined representability of relations using that
of functions (not the other way around). Below we use the expression “arguing in models”
to mean that we prove something for every model of a theory and then conclude that the
theory proves it by the Completeness theorem.

Lemma 5.23. If T is a τa-theory such that T ⊢ 0 ≠ S(0) and R ⊆ Nn, then

R is representable in T if and only if χR is representable in T .

40 ANUSH TSERUNYAN

Proof. ⇒: Let φ(x⃗) represent R in T and put

ψ(x⃗, y) ≡ (φ(x⃗) ∧ y = S(0)) ∨ (¬φ(x⃗) ∧ y = 0).

We show that ψ(x⃗, y) represents χR in T , that is: for all a⃗ ∈ Nn,

T ⊢ ψ(∆(a⃗), y)↔ y = χR(∆(a⃗)).

Assume a⃗ ∈ R. Then T ⊢ φ(∆(a⃗)) and thus, arguing in models of T ,

(φ(∆(a⃗)) ∧ y = S(0)) ∨ (¬φ(∆(a⃗)) ∧ y = 0)

holds if and only if y = S(0) holds (here is where we use that T ⊢ 0 ≠ S(0)). Thus, by the
Completeness theorem, T ⊢ ψ(∆(a⃗), y) ↔ y = S(0). Similarly, one shows that for a⃗ ∉ R,
T ⊢ ψ(∆(a⃗), y)↔ y = 0.
⇐: Let φ(x⃗, y) represent χR and put

ψ(x⃗) ≡ φ(x⃗, S(0)).

We show that ψ(x⃗) represents R in T . For every a⃗ ∈ Nn,

R(a⃗) Ô⇒ χR(a⃗) = 1

Ô⇒ T ⊢ φ(∆(a⃗), y)↔ y = S(0)

Ô⇒ T ⊢ φ(∆(a⃗), S(0)) (substitute y = S(0))

Ô⇒ T ⊢ ψ(∆(a⃗)).

Similarly,

¬R(a⃗) Ô⇒ χR(a⃗) = 0

Ô⇒ T ⊢ φ(∆(a⃗), y)↔ y = 0

Ô⇒ T ⊢ ¬φ(∆(a⃗), S(0)) (substitute y = S(0))

Ô⇒ T ⊢ ¬ψ(∆(a⃗)).

�

Now we describe a finite subtheory of Th(N), namely Robinson’s6 system Q, which is
much weaker than PA, but still rich enough to represent recursive functions. The advantage
of it over PA is that it is finite, and we will use this later in proving that the empty τa-theory
is undecidable.

Definition 5.24 (Robinson’s system Q). The following are the axioms of Q:

(Q1) ∀x[¬S(x) = 0],
(Q2) ∀x∀y[S(x) = S(y)→ x = y],
(Q3) ∀x[x + 0 = x],
(Q4) ∀x∀y[S(x + y) = x + S(y)],
(Q5) ∀x[x ⋅ 0 = 0],
(Q6) ∀x∀y[x ⋅ S(y) = x ⋅ y + x],
(Q7) ∀x(x ≠ 0→ ∃y(x = S(y))).

6This is due to Raphael Robinson and not Abraham or Julia Robinsons as I falsely thought.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 41

So the difference between PA and Q is that the induction schema of PA is replaced by a
single axiom stating that every nonzero element has a predecessor (which is clearly prov-
able in PA). This theory is pretty weak: for example, it does not prove the associativ-
ity/commutativity of the addition/multiplication. However, every model of Q has a standard
part:

Proposition 5.25.

(a) For any model M of Q, there is a unique homomorphism f ∶ N →M. In fact, this f is
a τa-embedding and hence we can view N as a substructure of M.

(b) For any quantifier free formula φ(x⃗) and a⃗ ∈ Nk,

N ⊧ φ(a⃗) ⇐⇒ Q ⊢ φ(∆(a⃗)),

where ∆(a⃗) = (∆(a1), ...,∆(ak)).

Proof. Part (b) follows from (a) since for M ⊧ Q, N ⊆ M and hence

N ⊧ φ(a⃗) ⇐⇒ M ⊧ φ(∆(a⃗)),

because φ is quantifier free. Because M was an arbitrary model of Q, we are done by the
Completeness theorem.

As for part (a), the proof is exactly the same as for models of PA. The uniqueness is
clear because we f has to preserve 0 and S and thus f(∆(n)N) = ∆(n)M. This function is
injective because SM is injective and 0M does not have a predecessor. It remains to show
that f preserves + and ⋅. We show that f(n +m) = f(n) + f(m) by induction on m, and
we leave the case of ⋅ to the reader. For m = 0, this follows from axiom (Q3). Now assume
f(n+m) = f(n)+f(m). Then f(n+S(m)) = f(S(n+m)) = S(f(n+m)) = S(f(n)+f(m)) =
f(n) + S(f(m)) = f(n) + f(S(m)), where we used the facts that f respects S and that M
satisfies axiom (Q4). �

Let x ≤ y and x < y abbreviate the formulas ∃z(z + x = y) and x ≠ y ∧ ∃z(z + x = y),
respectively. Keep in mind that z + x may not be equal to x + z in a model of Q. Since the
statement x ≤ y is not quantifier free, it does not follow from the previous lemma that a
model of Q and N have to agree on the ordering of natural numbers (the standard part of
M). However, it turns out to still be true:

Lemma 5.26 (Q preserves the ordering on N). For all n,m ∈ N,

(a) Q ⊢ x ≤ ∆(n)→
n

⋁
i=0
x = ∆(i);

(b) n ≤m ⇐⇒ Q ⊢∆(n) ≤ ∆(m);
(c) ¬n ≤m ⇐⇒ Q ⊢ ¬∆(n) ≤ ∆(m);
(d) Q ⊢ x ≤ ∆(n) ∨∆(n + 1) ≤ x;
(e) Q ⊢ x ≤ ∆(n) ∨∆(n) < x.

Proof. For part (b), the right-to-left direction follows immediately from (a). As for the other
direction, if n ≤ m, then let k = m − n and thus N ⊧ ∆(k) +∆(n) = ∆(m). By (b) of 5.25,
Q ⊢∆(k) +∆(n) = ∆(m) and thus Q ⊢∆(n) ≤ ∆(m).

For (e), first consider n = 0. Then by (Q3), Q ⊢ 0 ≤ x, so the desired statement follows
from the definition of the formula y < z. Now let n ≠ 0 and hence n = m + 1. By (d),
Q ⊢ x ≤ ∆(m)∨∆(n) ≤ x. Thus, arguing in Q and using (a), either x = ∆(k) for some k < n,
or x = ∆(n), or ∆(n) ≥ x. Hence, again using (a) and the definition of the formula y < z, we
get that either x ≤ ∆(n) or ∆(n) < x.

42 ANUSH TSERUNYAN

We leave the proofs of (c) and (d) to the reader, and we prove (a) by induction on n.
Let M ⊧ Q. For n = 0, assume a ∈ M and M ⊧ a ≤ 0. Thus, there is b ∈ M such that
M ⊧ b + a = 0. Now if a ≠ 0M, then a has a predecessor, i.e. for some c ∈ M, M ⊧ a = S(c)
and thus M ⊧ b + S(c) = 0. Arguing inside M, 0 = b + S(c) = S(b + c), which contradicts the
fact that 0 is not a successor. Thus a = 0.

Now assume the statement is true for n and assume M ⊧ a ≤ ∆(n + 1). Hence there is
b ∈M such that b + a = ∆(n + 1) (arguing inside M). Now if a = 0, we are done. Otherwise,
it has a predecessor c ∈ M and thus S(b + c) = b + S(c) = ∆(n + 1). By injectivity of S, we
get b + c = ∆(n) and hence c ≤ ∆(n). By the induction hypothesis, c is equal to one of ∆(i)
for i = 0, ..., n and thus a is equal to one of ∆(j) for j = 1, ..., n + 1. �

Proposition 5.27. All recursive functions and relations are representable in Q.

Proof. By Lemma 5.23, it is enough to show for functions.
It follows from (b) of 5.25 that the terms x+y, x⋅y represent the addition and multiplication

functions. It is clear that the term t(x1, ..., xn) = xi represents the projection function
P n
i (x1, ..., xn) = xi, and it follows from (c) and (d) of 5.26 that the formula x ≤ y represents

the relation ≤ and hence χ≤ is representable by 5.23. It remains to show that representability
is closed under (R2) and (R3).

For (R2), assume that φ(x⃗, y) represents the function g ∶ Nk → N and ψi(v⃗, u) represent
the functions hi ∶ Nn → N, where x⃗ is an k-vector and v⃗ is a n-vector. We show that

θ(v⃗, y) ≐ ∃x⃗
k

⋀
i=1
ψi(v⃗, xi) ∧ φ(x⃗, y)

represents f = g(h1, ..., hk). Fix a⃗ ∈ Nn and let c = f(a⃗). We have to show that

Q ⊢ θ(∆(a⃗), y)↔ y = ∆(c).

Let bi = hi(a⃗) and put b⃗ = (b1, ..., bk). Then f(a⃗) = g(b⃗) = c. Therefore,

Q ⊢ φ(b⃗, y)↔ y = c and Q ⊢ ψi(∆(a⃗), z)↔ z = ∆(bi), for i = 1, ..., k.

Thus, arguing in models, we conclude that Q ⊢ θ(∆(a⃗), y)↔ y = ∆(c).
For (R3), let φ(x⃗, y, z) represent the function g ∶ Nn+1 → N, where x⃗ is an n-vector and g

is such that for all a⃗ ∈ Nn there is b ∈ N such that g(a⃗, b) = 0. We show that

ψ(x⃗, z) ≐ φ(x⃗, y,0) ∧ ∀u(u < z → ¬φ(x⃗, u,0))

represents f(a⃗) = µx(g(a⃗, x) = 0). Fix a⃗ ∈ Nn and let b = f(a⃗). We have to show that

Q ⊢ ψ(∆(a⃗), z)↔ z = ∆(b).

By definition, g(a⃗, i) = ci ≠ 0 for all i < b, and g(a⃗, b) = 0. Thus

Q ⊢ φ(a⃗,∆(b), v)↔ v = 0 and Q ⊢ φ(a⃗,∆(i), v)↔ v = ∆(ci) for all i < b.

Arguing in models and using part (a) of 5.26, we conclude that

Q ⊢ ψ(∆(a⃗), z)↔ z = ∆(b).

�

The converse of this proposition is also true and we will prove it in a later subsection.
Thus representability in Q characterizes recursive functions.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 43

5.D. Gödel coding

Here we describe a coding of formulas and proofs, and all functions necessary to prove the
fixed point lemma and the Incompleteness theorem.

For the rest of the section, let τ be a finite signature.

● We code the symbols of FOL(τ) as follows: for s ∈ τ∪{logical symbols}∪{v0, v1, ...}, assign
a number SN(s) as follows: put SN(s) = 2i if s = vi and assign an odd number to each of
the remaining symbols (finitely many) such that different symbols get different numbers.

● For a τ -term t, define its Gödel code ⌜t⌝ as follows

⌜t⌝ = {
⟨SN(s)⟩ if t = s is a variable or a constant symbol
⟨SN(f), ⌜t1⌝, ..., ⌜tn⌝⟩ if f is an n-ary function symbol and t = f(t1, ..., tn)

.

Note that for a variable or a constant symbol s, ⌜s⌝ may not be equal to SN(s).
● For a τ -formula φ, define its Gödel code ⌜φ⌝ as follows

⌜φ⌝ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨SN(=), ⌜t1⌝, ⌜t2⌝⟩ if φ ≡ (t1 = t2)
⟨SN(R), ⌜t1⌝, ..., ⌜tn⌝⟩ if R is an n-ary relation symbol and φ ≡ R(t1, ..., tn)
⟨SN(¬), ⌜ψ⌝⟩ if φ ≡ ¬ψ
⟨SN(∧), ⌜ψ1⌝, ⌜ψ2⌝⟩ if φ ≡ ψ1 ∧ ψ2

⟨SN(∨), ⌜ψ1⌝, ⌜ψ2⌝⟩ if φ ≡ ψ1 ∨ ψ2

⟨SN(→), ⌜ψ1⌝, ⌜ψ2⌝⟩ if φ ≡ ψ1 → ψ2

⟨SN(∃), ⌜v⌝, ⌜ψ⌝⟩ if φ ≡ ∃vψ
⟨SN(∀), ⌜v⌝, ⌜ψ⌝⟩ if φ ≡ ∀vψ

.

Lemma 5.28. The following subsets of N are primitive recursive:

(i) Variable ∶= {⌜x⌝ ∶ x is a variable}
(ii) Term ∶= {⌜t⌝ ∶ t is a τ -term}

(iii) Formula ∶= {⌜φ⌝ ∶ φ is a τ -formula}

Proof. In all proofs we use complete primitive recursion (Lemma 5.19).
(i) a ∈ Variable if and only if lh(a) = 1 and (a)0 is even.
(ii) Term(a) if and only if Variable(a) or a is a code for a constant symbol or (a)0 is a code
for an n-ary functions symbol with n = lh(a) − 1 and ∀i < n,Term((a)i+1).
(iii) is left to the reader. It gets messy if one wants to also check our convention about
quantified variables. �

Lemma 5.29. There is a primitive recursive function Sub ∶ N3 → N such that for any
τ -formula φ, variable v and τ -term t that is free for φ,

Sub(⌜φ⌝,SN(v), ⌜t⌝) = ⌜φ(t/v)⌝.

Proof. Define Sub(a,m, k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

k if Variable(a) and (a)0 =m
⟨(a)0,Sub((a)1,m, k), ...,Sub((a)lh(a)−1,m, k)⟩ if lh(a) > 0 and (a)0 ≠ SN(∃)
⟨(a)0, (a)1,Sub((a)2,m, k)⟩ if lh(a) > 0 and (a)0 = SN(∃) and (a)1 ≠m
a otherwise

.

This is clearly primitive recursive (using complete recursion). �

Lemma 5.30. The following relations are primitive recursive:

44 ANUSH TSERUNYAN

(1) FreeVar ∶= {(⌜φ⌝,SN(v)) ∶ v occurs free in φ} ⊆ N2

(2) FreeSub ∶= {(⌜φ⌝, ⌜t⌝) ∶ t is free for φ} ⊆ N3

(3) Sentence ∶= {⌜φ⌝ ∶ φ is a sentence} ⊆ N
(4) Axiom ∶= {⌜φ⌝ ∶ φ is an axiom of FOL(τ)} ⊆ N
(5) MP ∶= {(⌜φ⌝, ⌜φ→ ψ⌝, ψ) ∶ φ,ψare τ -formulas} ⊆ N3

(6) Gen ∶= {(⌜φ⌝, ⌜ψ⌝) ∶ ψ is obtained from φ by Generalization} ⊆ N2

(7) ExistsElim ∶= {(⌜φ⌝, ⌜ψ⌝) ∶ ψ is obtained from φ by ∃-elimination} ⊆ N2

where φ, t v range over formulas, terms and variables of FOL(τ).

Proof. This is an easy but tedious programming exercise. For example: for all a ∈ N,

Sentence(a) ⇐⇒ Formula(a) and ∀i<a¬FreeVar(a, i).

The readers are invited to check the rest of the relations themselves if they feel like program-
ming. �

Definition 5.31. For a τ -theory T , define

ProofT ∶= {(⟨⌜φ1⌝, ..., ⌜φn⌝⟩, ⌜φ⌝) ∶ (φ1, ..., φn) is a proof of φ from T} ⊆ N2,

where φi and φ vary over τ -formulas.

For a τ -theory T , put ⌜T ⌝ ∶= {⌜φ⌝ ∶ φ ∈ T}. We say that T is recursive (primitive recursive,
arithmetical) if such is ⌜T ⌝.

Lemma 5.32. If a τ -theory T is recursive (primitive recursive, arithmetical), then so is
ProofT .

Proof. This is because for all a ∈ N, ProofT (a, b) if and only if lh(a) > 0 and (a)lh(a)−1 = b
and for every k < lh(a) either (a)k ∈ Axiom or (a)k ∈ ⌜T ⌝ or ∃i<k∃j<kMP((a)i, (a)j, (a)k) or
∃j<kGen((a)j, (a)k) or ∃j<kExistsElim((a)j, (a)k). �

5.E. The First Incompleteness Theorem (Rosser’s form)

Define a function Sub0 ∶ N2 → N by Sub0(a,n) = Sub(a,SN(v0),∆(n)). It is clear that Sub0
is primitive recursive since such is Sub.

For a τa-formula θ, put [θ] ∶= ∆(⌜θ⌝).

Lemma 5.33 (Fixed point for Q). For every τa-formula φ(v), there is a τa-sentence θ such
that

Q ⊢ θ↔ φ([θ]).

Proof. Let Sub0(x, y, z) be a τa-formula representing Sub0 in Q. We can assume without
loss of generality that the variable v0 does not appear in Sub0 and φ. Put

ψ(v0) ≡ ∃z(Sub0(v0, v0, z) ∧ φ(z)),

and let e = ⌜ψ⌝. Put θ ≡ ψ(∆(e)). Then Sub0(e, e) = ⌜ψ(∆(e))⌝ = ⌜θ⌝ and hence, by the
definition of representability,

Q ⊢ Sub0(∆(e),∆(e), z)↔ z = [θ]. (i)

In particular,

Q ⊢ Sub0(∆(e),∆(e), [θ]). (ii)

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 45

Therefore, we have

Q ⊢ θ ⇐⇒ Q ⊢ ψ(∆(e))
⇐⇒ Q ⊢ ∃z(Sub0(∆(e),∆(e), z) ∧ φ(z))
⇐⇒ Q ⊢ Sub0(∆(e),∆(e), [θ]) ∧ φ([θ]) (Ô⇒ is because of (i))
⇐⇒ Q ⊢ φ([θ]). (⇐Ô is because of (ii))

�

Now we are ready to prove the Incompleteness theorem for all τa-theories T ⊇ Q. However,
we would like to prove a slightly stronger version that applies to theories in signatures other
than τa that are rich enough to encode Q in them. We make this precise in the following

Definition 5.34. Let T1, T2 be theories in finite signatures τ1, τ2, respectively. An interpre-
tation of T1 in T2 is a map π from the set of τ1-sentences to the set of τ2-sentences such
that

(i) T1 ⊢ θ Ô⇒ T2 ⊢ π(θ),
(ii) T2 ⊢ π(¬θ)↔ ¬π(θ),

(iii) T2 ⊢ π(φ ∧ ψ)↔ π(φ) ∧ π(ψ),
(iv) there is a primitive recursive function π∗ ∶ N→ N such that π∗(⌜θ⌝) = ⌜π(θ)⌝,

where θ, φ,ψ range over τ1-sentences, and in the last equality, ⌜ ⌝ denotes the coding function
of FOL(τ1) on the left and of FOL(τ2) on the right.

If there is an interpretation of T1 in T2, we say that T2 interprets T1. For example, ZFC
interprets Q. Also, if T1 ⊆ T2, then by taking the identity function as π∗, we see that T2
interprets T1.

Below let τ be a finite signature.

Lemma 5.35. Let T be a (primitive) recursive τ -theory that interprets Q and let π be an
interpretation of Q in T . Then the following relations are (primitive) recursive:

Proofπ,T (a, b) ⇐⇒ b is an FOL(τa)-code of a τa-sentence φ and
a is an FOL(τ)-code of a proof of π(φ) from T ,

Refuteπ,T (a, b) ⇐⇒ b is an FOL(τa)-code of a τa-sentence φ and
a is an FOL(τ)-code of a proof of π(¬φ) from T .

Proof. Observe that

Proofπ,T (a, b) ⇐⇒ Sentenceτa(b) and ProofT (a, π∗(b)),
Refuteπ,T (a, b) ⇐⇒ Sentenceτa(b) and ProofT (a, π∗(⟨SN(¬), b⟩)).

�

First Incompleteness Theorem 5.36 (Rosser’s form). Any consistent recursive τ -theory
that interprets Q is incomplete.

Let us contemplate about the proof a bit before we present it. In the proof of the Incom-
pleteness theorem for T ⊆ Th(N), we constructed a sentence γ that basically expressed the
Liar Paradox: it said about itself that it is not provable. Let us try to use the same idea
here: let π be an interpretation of Q in T and let Proofπ,T (x, y) be a τa-formula representing
Proofπ,T in Q. Then by the fixed point lemma for Q, we get a τa-sentence γ such that

Q ⊢ γ ↔ ∀x¬Proofπ,T (x, [γ]). (∗)

46 ANUSH TSERUNYAN

It is true that T ⊬ π(γ) since otherwise there will be a code a ∈ N of a proof of π(γ) from
T and hence Q ⊢ Proofπ,T (∆(a), [γ]). But then by (∗), Q ⊢ ¬γ and thus T ⊢ π(¬γ), so
T ⊢ ¬π(γ), contradicting the consistency of T .

However, we don’t get any contradiction if we assume T ⊢ ¬π(γ). Indeed, assuming the
latter, the consistency of T implies that T ⊬ π(γ) and hence there is no natural number
that is a code of a proof of π(γ) from T , i.e. ¬Proofπ,T (a, ⌜γ⌝), for all a ∈ N. Then,
for every a ∈ N, Q ⊢ ¬Proofπ,T (∆(a), [γ]). Unfortunately, this does NOT imply that
Q ⊢ ∀x¬Proofπ,T (x, [γ]) because there may well be a model M of Q with a nonstandard
element w ∈M ∖N such that M ⊧ Proofπ,T (w, [γ]) and there is no contradiction here.

So, the Liar Paradox doesn’t work here and Rosser’s trick is to use an idea somewhat
similar to (but not the same as) Berry’s Paradox, which is the following:

The smallest natural number not definable in less than 100 characters.

This is a “paradox” because we can only define finitely many different numbers using less
than 100 characters (English letters and numbers) and hence there surely are numbers which
cannot be defined in less than 100 characters. However, we just described the smallest of
them using (I believe) 70 characters.

Rosser’s proof of the Incompleteness Theorem 5.36. Let π be an interpretation of Q in T ,
and let Proofπ,T (x, y) and Refuteπ,T (x, y) be τa-formulas representing Proofπ,T and Refuteπ,T
in Q. Then by the fixed point lemma for Q, we get a τa-sentence ρ such that

Q ⊢ ρ↔ ∀x(Proofπ,T (x, [ρ])→ (∃u < x)Refuteπ,T (u,x)). (1)

The Rosser sentence ρ expresses the unprovability of its translation in T in a round-about
way: it asserts

For every proof of myself, there is a shorter proof of my negation.

We show that neither T ⊢ π(ρ) nor T ⊢ ¬π(ρ).
Case 1: suppose T ⊢ π(ρ). Then there is a code m ∈ N of a proof of π(ρ) from T and hence

Q ⊢ Proofπ,T (∆(m), [ρ]). (2)

Because T is consistent, T ⊬ π(¬ρ) since π(¬ρ) ≡ ¬π(ρ). Thus ∀k ∈ N, ¬Refuteπ,T (k, ⌜ρ⌝)
and hence Q ⊢ ¬Refuteπ,T (∆(k), [ρ]); in particular, this is true for all k <m. Therefore, by
(a) of Lemma 5.26,

Q ⊢ (∀u < ∆m)¬Refuteπ,T (u, [ρ]). (3)

From (2) and (3), we get

Q ⊢ ∃x(Proofπ,T (x, [ρ]) ∧ (∀u < x)¬Refuteπ,T (u,x)),

which implies Q ⊢ ¬ρ by (1). Therefore, T ⊢ π(¬ρ) and hence T ⊢ ¬πρ, contradicting the
consistency of T .

Case 2: suppose T ⊢ ¬π(ρ). Thus T ⊢ π(¬ρ), so there is a code k ∈ N of a proof of π(¬ρ)
from T . Hence Refuteπ,T (k, ⌜ρ⌝) holds and by representability in Q,

Q ⊢Refuteπ,T (∆(k), [ρ]). (4)

Also, for any n ∈ N, ¬Proofπ,T (n, ⌜ρ⌝) holds by the consistency of T , and thus

Q ⊢ ¬Proofπ,T (∆(n), [ρ]). (5)

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 47

We argue in models, so fix M ⊧ Q. By (e) of Lemma 5.26, for every a ∈ M , a ≤ ∆(k) or
∆(k) < a. In the first case, by (a) of Lemma 5.26, we get that a = ∆(n) for some n ≤ k, and
thus M ⊧ ¬Proofπ,T (a, [ρ]), by (5). In the second case, i.e. if ∆(k) < a,

M ⊧ (∃u < a)Refuteπ,T (u, [ρ]),

by (4). Therefore, for all a ∈M ,

M ⊧ Proofπ,T (a, [ρ])→ (∃u < a)Refuteπ,T (u, [ρ]).

Thus
Q ⊢ ∀x(Proofπ,T (x, [ρ])→ (∃u < x)Refuteπ,T (u,x)),

and hence Q ⊢ ρ, by (1). But then T ⊢ π(ρ), contradicting the consistency of T . �

5.F. The Second Incompleteness Theorem and Löb’s theorem

Let τ be a finite signature and let T be a recursive τ -theory. Recall that the relations

ProofT (a, b) ⇐⇒ b is a code of a sentence a is a code of a proof of it from T ,
RefuteT (a, b) ⇐⇒ b is a code of a sentence a is a code of a proof of the negation of it from T ,

are recursive. Let ProofT (x, y) and RefuteT (x, y) be τa-formulas representing them in Q.

Definition 5.37. For T as above, we define a τa-sentence that expresses the consistency of
T as follows:

ConT ≡ ¬∃x∃y∃zProofT (x, z) ∧RefuteT (y, z).

Lemma 5.38. Let T be a recursive τ -theory interpreting PA and let π be an interpretation.
Also, let ρT be the Rosser sentence for T as in the proof of 5.36 above. Then PA ⊢ConT → ρT .

Proof. We claim that Rosser’s proof of the First Incompleteness theorem can be carried out
in PA. It would take too long to actually prove this, but the main point is the following:
Rosser’s proof is completely syntactic, i.e. playing with formal proofs (we only used models
and the Completeness theorem because we were too lazy to do formal proofs, but in principle
we could have constructed all necessary formal proofs). Syntactic arguments such as the
proofs of the fixed point lemma or Deduction theorem can be expressed and carried through
PA because all they use is induction, which PA has.

Thus, in particular PA proves that if T is consistent then T ⊬ π(ρT):

PA ⊢ConT → ∀x¬Proofπ,T (x, [ρT]).

On the other hand, it follows from the definition of ρT that

PA ⊢ ∀x¬Proofπ,T (x, [ρT])→ ρT .

Therefore, PA ⊢ConT → ρT . �

From this we immediately get yet another foundational theorem by Gödel:

Second Incompleteness Theorem 5.39. Let T be a recursive τ -theory interpreting PA
and let π be an interpretation. Then T ⊬ π(ConT), i.e. T cannot prove its own consistency.

Proof. By the previous lemma and the fact that π is an interpretation of PA in T , we get

T ⊢ π(ConT)→ π(ρT).

Thus, if T ⊢ π(ConT) then T ⊢ π(ρT), which is a contradiction. �

48 ANUSH TSERUNYAN

For a recursive τ -theory T , let ProvableT (y) ≡ ∃xProofT (x, y).

Lemma 5.40. Let φ, θ be τa-sentences. The following statements are provable in PA:

(a) The Deduction theorem: ProvablePA∪{θ}([φ])↔ ProvablePA([θ → φ]).
(b) Proof by contradiction: ProvablePA([¬θ → (0 = 1)])↔ ProvablePA([θ]).

Proof. To prove this one has to note that the proofs of the corresponding theorems can be
formalized in PA since all they use is syntactic arguments and induction. �

Because N is a model of PA, we know that whatever PA proves is true about the natural
numbers, in other words, for every τa-sentence θ,

N ⊧ ProvablePA([θ])→ θ.

Does PA know this? That is: does it prove ProvablePA([θ]) → θ for all θ? Here is the
answer:

Theorem 5.41 (Löb, 1955). For every τa-sentence θ, PA does not prove ProvablePA([θ])→
θ unless it proves θ itself, i.e.

PA ⊢ ProvablePA([θ])→ θ ⇐⇒ PA ⊢ θ.

Proof. We prove the left-to-right direction since the other one is trivial. Assume for con-
tradiction that PA ⊢ ProvablePA([θ]) → θ yet PA ⊬ θ. Thus the theory T ∶= PA ∪ {¬θ} is
consistent. By contrapositive, PA ⊢ ¬θ → ¬ProvablePA([θ]) and hence,

T ⊢ ¬ProvablePA([θ]). (�)

By (a) and (b) of Lemma 5.40, we have

PA ⊢ ProvableT ([0 = 1])↔ ProvablePA([¬θ → (0 = 1)])

and
PA ⊢ ProvablePA([¬θ → (0 = 1)])↔ ProvablePA([θ]),

which yield
PA ⊢ ¬ProvablePA([θ])↔ ¬ProvableT ([0 = 1]).

Now by (�), we get
T ⊢ ¬ProvableT ([0 = 1]).

But PA ⊢ ¬ProvableT ([0 = 1]) ↔ ConT (again by a metamathematical argument that we
can formalize this in PA), and hence T ⊢ ConT , contradicting the Second Incompleteness
theorem. �

6. Undecidable theories

Fix a finite signature τ .

Definition 6.1. For a τ -theory T , let Thm(T) denote the set of its theorems, i.e. Thm(T) ∶=
{φ ∶ T ⊢ φ} ⊆ N, where φ ranges over all τ -sentences. If ⌜Thm(T)⌝ is recursive, T is called
decidable.

After various incompleteness results, we are now convinced that sufficiently rich recursive
theories T such as PA or ZFC are incomplete. But maybe we can still write a program that for
a given sentence φ decides whether it is a theorem of T or not? More precisely, is T decidable?
(If the answer was yes for example for ZFC, mathematicians would be unemployed and the
world would be an uninteresting place to live in.) This section is devoted to answering this
question.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 49

6.A. Σ0
1 sets and Kleene’s theorem

Definition 6.2 (Σ0
1 relations). A relation (set) Q ⊆ Nk is called Σ0

1 if for some recursive
relation R ⊆ Nk+1,

a⃗ ∈ Q ⇐⇒ ∃xR(a⃗, x).

We also denote by Σ0
1 the set of all Σ0

1 relations.

Here are some closure properties of Σ0
1:

Lemma 6.3.

(1) Σ0
1 is closed under finite unions/intersections and taking projections, i.e. if P,Q ⊆ Nk,

R ⊆ Nk+1 are Σ0
1, then so are

P ∨Q, P ∧Q, ∃xR(⋅, x).

(2) Σ0
1 is closed under recursive preimages, i.e. if f ∶ Nk → N is recursive and A ⊆ N is

Σ0
1, then the relation B = f−1(A) is Σ0

1.

Proof. We leave (a) as a homework exercise, and we prove (b). Let R ⊆ N2 be a recursive
relation such that for all n ∈ N, n ∈ A ⇐⇒ ∃mR(n,m). But then the relation Q ⊆ Nk+1

defined by

(a⃗,m) ∈ Q ⇐⇒ R(f(a⃗),m)

is recursive and hence the relation

a⃗ ∈ B ⇐⇒ ∃mQ(a⃗,m)

is Σ0
1. �

Lemma 6.4. For a τ -theory T , if T is recursive, then ⌜Thm(T)⌝ is Σ0
1.

Proof. If T is recursive, then so is the relation ProofT ⊆ N2 defined in the previous subsection.
But then for all a ∈ N

a ∈ ⌜Thm(T)⌝ ⇐⇒ ∃xProofT (x, a).

�

Let Π0
1 denote the set of complements of Σ0

1 relations, i.e. Π0
1 = {¬R ∶ R ∈ Σ0

1}, and let
∆0

1 ∶= Σ0
1 ∩Π0

1. Also, let Recursive denote the set of recursive relations.

Lemma 6.5 (Kleene’s theorem). ∆0
1 = Recursive.

Proof. ⊇: It is clear that Recursive ⊆ Σ0
1 (why?) and since Recursive is closed under comple-

ments, Recursive ⊆ ∆0
1.

⊆: Let R ⊆ Nk be a ∆0
1 relation. Hence, there are recursive relations P,Q ⊆ Nk+1 such that

∀a⃗ ∈ Nk

a⃗ ∈ R ⇐⇒ ∃xP (a⃗, x), a⃗ ∈ ¬R ⇐⇒ ∃xQ(a⃗, x).

But then the function f ∶ Nk → N defined by f(a⃗) = µx(P ∨Q(a⃗, x)) is recursive and hence
so is R since a⃗ ∈ R ⇐⇒ f(a⃗) ∈ P . �

From this we immediately get the following decidability result:

Proposition 6.6. Every complete recursive τ -theory T is decidable.

50 ANUSH TSERUNYAN

Proof. Using the fact that for every τ -sentence φ, φ ∉ Thm(T) ⇐⇒ ¬φ ∈ Thm(T), we get
that for every a ∈ N,

a ∉ ⌜Thm(T)⌝ ⇐⇒ a ∉ Sentenceτ or ⟨SN(¬), a⟩ ∈ ⌜Thm(T)⌝.

By Lemma 6.4, ⌜Thm(T)⌝ is Σ0
1. Because ¬Sentenceτ is recursive (hence Σ0

1) and Σ0
1 is closed

under recursive preimages and finite unions (6.3), the right hand side is Σ0
1 and thus so is

¬⌜Thm(T)⌝. Therefore, ⌜Thm(T)⌝ is ∆0
1 and hence is recursive (by Kleene’s theorem). �

As a corollary, we get that ACFp, p = 0 or prime, and the theory of vector spaces over a
countable field7 are decidable.

6.B. Universal Σ0
1 relation and Church’s theorem

For any sets A,B, any relation R ⊆ A×B, and a ∈ A, put R(a) ∶= {b ∈ B ∶ (a, b) ∈ R}. In this
subsection we construct a Σ0

1 relation R ⊆ N2 that is universal for recursive relations, i.e. any
recursive relation P ⊆ N is of the form P = R(a), for some a ∈ N. Using this we prove that
any consistent theory interpreting Q is undecidable. We start with proving the converse of
5.27.

Proposition 6.7. Let T be a recursive consistent τa-theory. Then any relation R ⊆ Nk

representable in T is recursive. In particular, any function f ∶ Nk → N representable in T is
recursive.

Proof. The statement about functions follows from that about relations since if f is repre-
sentable, then so is its graph (why?), and hence by the first statement the graph is recursive
and hence so is f , by the graph property (5.10).

Let R ⊆ Nk be representable in T by a formula φ(x⃗). By the definition of representability
and because T is consistent, for all a⃗ ∈ Nk, we have

a⃗ ∈ R ⇐⇒ T ⊢ φ(∆(a⃗)) ⇐⇒ ⌜φ(∆(a⃗))⌝ ∈ ⌜Thm(T)⌝.

The function s ∶ Nk → N defined by a⃗ → ⌜φ(∆(a⃗))⌝ is clearly primitive recursive (just apply
the Sub function for each free variable of φ). By 6.4, Thm(T) is Σ0

1 and hence the right hand
side is Σ0

1 by (b) of 6.3.
Because the definition of representability is symmetric for R and ¬R, we have that ¬R is

also representable (by ¬φ) and hence, by what we have already proven, ¬R is Σ0
1. Hence, by

Kleene’s theorem, R is recursive. �

From this and 5.27, we get

Corollary 6.8. Let f ∶ Nk → N. f is recursive if and only if it is representable in Q.

This allows us to construct a relation that enumerates all recursive subsets of N as follows:

Definition 6.9. Recall the primitive recursive function Sub0(a,n) that has the property
that for every τa-formula φ,

Sub0(⌜φ⌝, n) = ⌜φ(∆(n)/v0)⌝.

7As it is written, 6.6 applies only to finite signatures and if a countable field F is not finite, the signature
τF of the theory of vector spaces over F is infinite. However, we can still assign codes to symbols in τF so
that we can decode all the information about the symbol from its code in a primitive recursive way. Thus
everything proven above applies to τF as well.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 51

For a τ -theory T that interprets Q by π, define a relation UT ⊆ N2 by

Uπ,T (a,n) ⇐⇒ π∗(Sub0(a,n)) ∈ ⌜Thm(T)⌝.

Proposition 6.10. Let T be a consistent τ -theory interpreting Q by π. Then for each
recursive relation R ⊆ N, there is e ∈ N such that R = Uπ,T (e). Furthermore, if T is recursive,
then Uπ,T is Σ0

1.

Proof. The second statement follows from the definition of Uπ,T and 6.4. For the first state-
ment, let φ(v0) be a formula representing R in Q (there is always one with the free variable
being v0), and thus for all n ∈ N,

n ∈ R Ô⇒ Q ⊢ φ(∆(n)) Ô⇒ T ⊢ π(φ(∆(n)))
n ∉ R Ô⇒ Q ⊢ ¬φ(∆(n)) Ô⇒ T ⊢ ¬π(φ(∆(n))).

Since T is consistent, we get

n ∈ R ⇐⇒ T ⊢ π(φ(∆(n))),

and therefore, letting e = ⌜φ(v0)⌝, we have

n ∈ R ⇐⇒ Uπ,T (e, n).

�

If we take T = Q and π = id in the above proposition, then, denoting Uid,Q by UQ, we get
an even stronger result:

Proposition 6.11. The relation UQ is Σ0
1, and for every Σ0

1 relation P ⊆ N, there is e ∈ N
with P = UQ(e). Thus UQ is a universal Σ0

1 relation.

Proof. This is left as a homework problem. �

If T is recursive, we know that Uπ,T is Σ0
1, but is it recursive? The answer is NO, and we

show it by the diagonalization method.

Lemma 6.12 (Cantor). For a set A and a relation R ⊆ A2, let P ⊆ A be denote its antidi-
agonal, i.e. P ∶= {a ∶ ¬R(a, a)}. Then P is not equal to R(a) for any a ∈ A.

Proof. Assume for contradiction that P = R(a), for some a ∈ A. Then we get a contradiction
because

¬R(a, a) ⇐⇒ P (a) ⇐⇒ R(a, a).

�

Corollary 6.13. For every consistent τ -theory T interpreting Q by π, the relation Uπ,T is
not recursive.

Proof. If Uπ,T were recursive, so would be its antidiagonal P and thus, by 6.10, there is a ∈ N
such that P = Uπ,T (a), contradicting 6.12. �

As a corollary, we get the following important result:

Theorem 6.14 (Church, 1936). Any consistent τ -theory T interpreting Q is undecidable.

Proof. Let π be an interpretation of Q in T . If T were decidable, i.e. ⌜Thm(T)⌝ were
recursive, then Uπ,T would be recursive as well, contradicting 6.13. �

52 ANUSH TSERUNYAN

In particular, Q and PA are undecidable. Also, ZFC is undecidable unless it is inconsistent.
Church’s theorem also has the following rather surprising consequence based on the fact that
Q is finite:

Corollary 6.15. The empty τa-theory is undecidable, i.e. Thmτa(∅) is not recursive.

Proof. Let φQ be the conjunction of the axioms of Q (here is where we use that Q is finite!).
Then, by the Deduction theorem, for any τa-sentence θ,

Q ⊢ θ ⇐⇒ ∅ ⊢ φQ → θ.

Thus, letting e = ⌜φQ⌝, we get that for all a ∈ N,

a ∈ ⌜Thm(Q)⌝ ⇐⇒ ⟨SN(→), e, a⟩ ∈ ⌜Thmτa(∅)⌝.

Hence, ⌜Thmτa(∅)⌝ cannot be recursive since otherwise ⌜Thm(Q)⌝ would also be recursive,
contradicting 6.14. �

7. Decidable theories and quantifier elimination

Fix a signature τ .

Definition 7.1. We say that a τ -theory T admits quantifier elimination (q.e.), if for every
formula φ(x⃗), there is a quantifier-free (q.f.) formula ψ(x⃗) such that

T ⊢ ∀x⃗(φ(x⃗)↔ ψ(x)). (∗)

Assuming that τ is finite, we say that T admits effective quantifier elimination if there is
recursive function h ∶ N → N such that for every formula φ(x⃗), h(⌜φ(x⃗)⌝) is a code of a q.f.
formula ψ(x⃗) such that (∗) holds.

We say that a τ -structure A admits q.e. if so does Th(A).
Note that for a τ -theory T to even have a chance to admit q.e. τ must contain at least

one constant symbol because there would have to exist a quantifier-free sentence.
There is a deep connection between q.e. and decidability. To see this, consider the set

QFThm(T) ∶= {ψ ∶ ψ is a q.f. sentence and T ⊢ ψ}. In most interesting cases, this set (i.e.
the set of the codes) is recursive. For example, for T = Th(R,0,1,+,−, ⋅,<) or T = ACF, a
q.f. sentence is just a Boolean combination of (in)equalities about terms made out of 0,1
using +,−, ⋅, and hence it is (at least intuitively) clear that QFThm(T) is recursive (in fact
primitive recursive).

Proposition 7.2. Let τ be a finite signature and T a τ -theory such that QFThm(T) is
recursive. If T admits effective q.e. then it is decidable.

Proof. Let h ∶ N→ N be a recursive function as in Definition 7.1, then for every n ∈ N,

n ∈ ⌜Thm(T)⌝ ⇐⇒ h(n) ∈ QFThm(T).

Thus ⌜Thm(T)⌝ is recursive since so is the right hand side. �

Here are some famous q.e. results.

Theorem 7.3 (Tarski). The structure (R,0,1,+,−, ⋅,<) admits effective quantifier elimina-
tion and hence its theory is decidable.

The above result is also known as the decidability of Euclidean geometry.
For p prime or 0, because ACFp is complete, we know that it is decidable. But here is a

stronger result:

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 53

Theorem 7.4 (Robinson, Tarski, possibly others). ACF admits effective quantifier elimina-
tion.

To appreciate this theorem, let A = (aij)2i,j=1 and let φ(A) be a formula in τring expressing
that A has an inverse. Clearly φ(A) is an existential formula. A q.f. formula equivalent
to it is the one expressing that the determinant of A is not 0. But their equivalence is a
somewhat nontrivial fact!

Recall the following reduct of N: N+ ∶= (N,0, S,+). In one of the previous sections, we
defined a (primitive recursive) axiomatization T+ for Th(N+) is stated that it is complete
(and hence decidable). The completeness of T+ is a consequence of the following

Theorem 7.5 (Presburger). T+ admits quantifier elimination.

To conclude the completeness of T+ from this note that any model M of T+ has a standard
part, i.e. N ⊆ M. Hence M and N believe the same q.f. sentences. But every sentence is
equivalent to a q.f. sentence (in T+), and thus N ≡ M.

For the rest of the section, we will develop a model-theoretic criterion for q.e. using which
we will show that ACF admits q.e. As an application, we will prove Hilbert’s Nullstellensatz.

7.A. A criterion for quantifier elimination

Let τ be a signature and A be a τ -structure. For B ⊆ A, put τ(B) ∶= τ ∪B, where elements
of B are treated as new constant symbols. We define the natural expansion of A to a
τ(B)-structure A(B) by interpreting symbols in B by themselves, i.e. ∀b ∈ B, bA(B) = b.

Definition 7.6 (Diagram). For a τ -structure A and B ⊆ A, define Diag(A,B) as the set of
all quantifier free τ(B)-sentences that are true in A(B), i.e.

Diag(A,B) ∶= {ψ ∶ ψ is a q.f. τ(B)-sentence and A(B) ⊧ ψ}.

When B = A, we simply write Diag(A) instead of Diag(A,A).

The following definition gives an equivalent (semantic) condition to quantifier elimination.

Definition 7.7. A τ -theory T is called diagram-complete if for any model A of T and any
a⃗ ∈ An (for any n), the τ(a⃗)-theory T ∪Diag(A, a⃗) is complete.

The term was chosen by me since I couldn’t find an already existing name (although the
notion is equivalent to substructure-completeness).

Proposition 7.8. Suppose τ has at least one constant symbol c. Then a τ -theory T admits
q.e. if and only if it is diagram-complete.

Proof. ⇒: Put S ∶= T ∪ Diag(A, a⃗) and let φ(x⃗) be a τ -formula with x⃗ = (x1, ..., xn). We
need to show that S proves either φ(a⃗) or ¬φ(a⃗). By q.e. there is a q.f. formula ψ(x⃗) such
that T ⊢ φ(x⃗) ↔ ψ(x). By definition, ψ(a⃗) ∈ Diag(A, a⃗) or ¬ψ(a⃗) ∈ Diag(A, a⃗), and hence
S ⊢ φ(a⃗) or S ⊢ ¬φ(a⃗).
⇐: Assume the right hand side and let φ(x⃗) be a τ -formula with x⃗ = (x1, ..., xn). Put

Γ(x⃗) ∶= {ψ(x⃗) ∶ ψ is a q.f. τ -formula and T ⊢ φ(x⃗)→ ψ(x⃗)}.

Take new constant symbols d⃗ = (d1, ..., dn) and consider the τ(d⃗)-theory T ′ = T ∪ Γ(d⃗). We
have three cases:

54 ANUSH TSERUNYAN

Case 1: T ′ ⊢ φ(d⃗). Since proofs are finite, there are ψ1(d⃗), ..., ψk(d⃗) ∈ Γ(d⃗) such that

T,ψ1(d⃗), ..., ψk(d⃗) ⊢ φ(d⃗). By the Deduction theorem, letting ψ(x⃗) ≡ ψ(x⃗) ∧ ... ∧ ψk(x⃗), we

get T ⊢ ψ(d⃗)→ φ(d⃗). By the Constant substitution lemma (Lemma 2.39), T ⊢ ψ(d⃗)→ φ(d⃗).
On the other hand, by the definition of Γ(x⃗), ψ(x⃗) ∈ Γ(x⃗) and hence T ⊢ φ(x⃗)→ ψ(x⃗). Thus

T ⊢ ψ(d⃗)↔ φ(d⃗), and we are done.

Case 2: T ′ ⊢ ¬φ(d⃗). By the same argument as above, there is ψ(x⃗) ∈ Γ(x⃗) such that T ⊢
ψ(x⃗)→ ¬φ(x⃗). But by the definition of Γ(x⃗), T ⊢ φ(x⃗)→ ψ(x⃗) and thus T ⊢ φ(x⃗)→ ¬φ(x⃗),
so T ⊢ ¬φ(x⃗). Therefore, T ⊢ φ(x⃗)↔ (c ≠ c).

Case 3: T ′ ⊬ φ(d⃗) and T ′ ⊬ ¬φ(d⃗). Then T ′∪{¬φ(d⃗)} is consistent and by the Completeness

theorem, has a model A(d⃗), where are A is its reduct to a τ -structure. Since A ⊧ T and T

is diagram-complete, S = T ∪Diag(A, d⃗) is a complete τ(d⃗)-theory and hence proves either

φ(d⃗) or ¬φ(d⃗). But S cannot prove φ(d⃗) since A(d⃗) ⊧ ¬φ(d⃗), so S ⊢ ¬φ(d⃗). Because proofs

are finite and T ⊬ ¬φ(d⃗), there is ψ(d⃗) ∈ Diag(A, d⃗) such that T ⊢ ψ(d⃗) → ¬φ(d⃗). Taking
the contrapositive and using the Constant substitution lemma (2.39), T ⊢ φ(x⃗) → ¬ψ(x⃗)

and so ¬ψ(x⃗) ∈ Γ(x⃗). Therefore, ¬ψ(d⃗) ∈ T ′ and hence ¬ψ(d⃗) ∈ Diag(A, d⃗), contradicting

the consistency of Diag(A, d⃗) since ψ(d⃗) ∈ Diag(A, d⃗). �

Note that in the definition of diagram-completeness, the model A is somewhat irrelevant,
it is only there to make sure that Diag(A, a⃗) is consistent and contains ψ(a⃗) or ¬ψ(a⃗) for
every q.f. formula ψ(x⃗). We make this precise in the lemma below.

Definition 7.9. Let d⃗ be a vector of distinct constant symbols that do not occur in τ . A
set Γ(d⃗) of quantifier free τ(d⃗)-sentences is called a T -diagram if T ∪ Γ(d⃗) is consistent and

for every q.f. τ(d⃗)-sentence ψ, ψ ∈ Γ(d⃗) or ¬ψ ∈ Γ(d⃗).

Lemma 7.10. A τ -theory T is diagram-complete if and only if for any d⃗ (of any length)

and any T -diagram Γ(d⃗), T ∪ Γ(d⃗) is a complete τ(d⃗)-theory.

Proof. ⇐ follows from the Soundness of FOL and ⇒ follows from the Completeness of
FOL. �

7.B. Quantifier elimination for ACF

In this subsection we prove that ACF is diagram-complete. The only method for showing
completeness that we have learnt so far is the Loś-Vaught test, and that is what we will use.

The proof of the following proposition is almost the same as of 4.5.

Proposition 7.11. For every ACF-diagram Γ(d⃗), ACF ∪ Γ(d⃗) is a κ-categorical τring(d⃗)-
theory, for every uncountable cardinal κ.

Proof. Let K1,K2 ⊧ ACF ∪ Γ(d⃗) with ∣K1∣ = ∣K2∣ = κ. Note that K1,K2 have the same

characteristic since it is expressible by a q.f. τring-sentence which must be contained in Γ(d⃗).
Let p be the characteristic (p = 0 or p is prime).

For i = 1,2, let Fi be the base field of Ki, i.e. the substructures of Ki generated by ∅.
(If p = 0, then Fi is a copy of Q; otherwise it is a copy of Z/pZ.) Since F1 and F2 are
clearly isomorphic (as rings), we can assume without loss of generality that F1 = F2 =∶ F .

Let a⃗ = d⃗K1 , b⃗ = d⃗K2 , and denote by F (a⃗), F (b⃗) the fields inside K1,K2, generated by a⃗,b⃗
over F , respectively.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 55

Claim. F (a⃗) and F (b⃗) are isomorphic.

Proof of Claim. Elements of F (a⃗) are of the form p(a⃗)
q(a⃗) , where p, q are polynomials over F and

q(a⃗) ≠ 0. Define h ∶ F (a⃗)→ F (b⃗) by p(a⃗)
q(a⃗) ↦

p(b⃗)
q(b⃗) . This is well-defined because if q(a⃗) ≠ 0, then

q(b⃗) ≠ 0 since a⃗ and b⃗ have the same diagram Γ(d⃗) and q(d⃗) ≠ 0 is a q.f. τring(d⃗)-sentence,

which must be in Γ(d⃗) since a⃗ satisfies it. It is easy to verify that h is a field homomorphism

and hence is injective, and it is surjective because elements of F (b⃗) are of the form p(b⃗)
q(b⃗) , for

some polynomials p, q over F . ⊣

Without loss of generality, we can identify F (a⃗) and F (b⃗), i.e. assume that L ∶= F (a⃗) =

F (b⃗). Let Bi be transcendence base over L in Ki. (Transcendence base is a maximal
collection of algebraically independent elements over L.) Now it is not hard to see that

Ki = L(Bi), where L(Bi) denotes the field generated by Bi over L and L(Bi) denotes its
algebraic closure in Ki.

Because L is countable, ∣Ki∣ = ∣Bi∣ ⋅ ℵ0 + ∣L∣. If Bi is countable then so is ∣Bi∣ ⋅ ℵ0 + ∣L∣,
but Ki is uncountable, and hence Bi is uncountable. Then, by basic cardinal arithmetic,
∣Bi∣ ⋅ ℵ0 + ∣L∣ = ∣Bi∣ and so κ = ∣Ki∣ = ∣Bi∣. Hence, there is a bijection f ∶ B1 → B2, which
uniquely extends to an isomorphism of L(B1) onto L(B2) by a map similar to the one in the
proof of the claim above. This isomorphism in its turn extends (not necessarily uniquely) to

an isomorphism of K1 = L(B1) onto K2 = L(B2). �

Corollary 7.12. ACF admits quantifier elimination.

Proof. Follows from 7.10 and 7.8. �

Corollary 7.13. The definable subsets of an algebraically closed field are finite or cofinite.

Proof. Let K be an algebraically closed field. By q.e., every definable set S ⊆ F is defined
by a q.f. formula φ(x). For the base case φ(x) ≡ (t1(x) = t2(x)), the statement is clear since
ti(x) is a polynomial in x with coefficients in K and the polynomial t1(x) − t2(x) has only
finitely many roots. The step case is also clear since the set of finite and cofinite subsets
of K is closed under finite unions (corresponding to ∧) and complements (corresponding to
¬). �

Remark 7.14. One can also show using a similar argument that the theory of vector spaces
over a countable field admits q.e. and conclude that the definable subsets of a vector space
are only the finite and cofinite ones. In general, structures with only definable subsets being
finite or cofinite are called strongly minimal. It turns out that in those structures one can
always define an abstract model-theoretic operation that generalizes algebraic closure (for
fields) and span (for vector spaces), and this operation allows to define notions of basis
and dimension such that the rest of the structure is “free” over a basis in the sense that
any bijection between bases extends to a (not necessarily unique) isomorphism between the
structures.

7.C. Model completeness and Hilbert’s Nullstellensatz

The following is a very useful notion that is slightly weaker than quantifier elimination.

Definition 7.15. A τ -theory T is called model-complete if A ⊆ B implies A ⪯ B, for all
A,B ⊧ T .

56 ANUSH TSERUNYAN

Proposition 7.16. Quantifier elimination implies model-completeness.

Proof. Suppose T admits q.e. and A ⊆ B, where A,B ⊧ T . Because A and B agree on the
q.f. formulas about the elements of A, and every formula is equivalent to a q.f. formula (in
T), A and B agree on all formulas about the elements of A. �

Remark 7.17. In fact, model-completeness is equivalent to the statement that every formula
is equivalent (in T) to an existential and a universal formula (recall that it was a homework
problem to show that linear independence was such a formula).

Thus ACF is model-complete since it admits q.e. Note that this fact actually follows from
7.11 directly without using 7.8.

Model-completeness of ACF implies the following famous (basic) theorem of algebraic
geometry:

Hilbert’s Nullstellensatz 7.18 (Weak Form). Let F be an algebraically closed field and
I be a proper ideal in the polynomial ring F [t1, ..., tn]. Then the polynomials in I have a
common root in F , i.e. there is a⃗ ∈ F n such that f(a⃗) = 0 for all f(t1, ..., tn) ∈ F [t1, ..., tn].

Proof. Take a maximal ideal M containing I (exists by Zorn’s lemma) and put

K ∶= F [t1, ..., tn]/M.

Since M is maximal, K is a field. Note that now every polynomial in M has a root in K in
the following sense: for f(t1, ..., tn) ∈ M , let f(x1, ..., xn) be the polynomial obtained from
f(t1, ..., tn) by replacing ti with variables xi of FOL(τring). Then, by the definition of K, for

all such f ∈M , f(b⃗) = 0, where b⃗ = (t1 +M, ..., tn +M) ∈ K. (This is why we moved from F
to K: to artificially create a common root).

Let L be an algebraic closure of K. Since K ⊆ L, there is still a common root in L
for all polynomials in M . Now we want to use the model-completeness of ACF to transfer
this statement down to F to obtain a common root in F . However, expressing (in a first-
order way) the statement that all polynomials in M have a common root seems to be a
problem because there are infinitely many polynomials in M (while formulas are finite).
Luckily, Hilbert’s basis theorem says that any ideal in F [t1, ...tn] is finitely generated, so M
is generated by some f1, ..., fm ∈ F [t1, ...tn]. Thus all polynomials in M having a common
root is equivalent to f1, ..., fm having a common root. Put

φ(a⃗) ≡ ∃x⃗
m

⋀
i=1

(fi(x⃗) = 0),

where a⃗ ∈ F k is a tuple containing all coefficients of f1, ..., fm. By model-completeness of
ACF, because F ⊆ L and F,L ⊧ ACF, we have F ⪯ L. Hence F ⊧ φ(a⃗) because L ⊧ φ(a⃗), and
thus f1, ..., fm have a common root in F . �

From this form of the Nullstellensatz, we can derive its strong form using the so-called
Rabinowitsch trick. First we introduce some notation. For a ring R, let I(R) denote the set
of its ideals. For a field F , a⃗ ∈ F n, and J ∈ I(F [x⃗]), we say that a⃗ annihilates J , and write
J(a⃗) = 0, if for each f ∈ J , f(a⃗) = 0. Put V (J) ∶= {a⃗ ∈ F n ∶ J(a⃗) = 0}. Similarly, for U ⊆ F n,

put I(U) ∶= {f ∈ F [x⃗] ∶ f(a⃗) = 0}. Clearly, I(V (J)) ⊇
√
J , where

√
J is the radical of J , i.e.

√
J ∶= {f ∈ F [x⃗] ∶ fm ∈ J for some m ∈ N}.

FIRST ORDER LOGIC AND GÖDEL INCOMPLETENESS 57

Hilbert’s Nullstellensatz 7.19 (Strong Form). Let F be an algebraically closed field. For

any J ∈ I(F [x⃗]), I(V (J)) =
√
J .

Proof. Let f ∈ I(V (J)), so every a⃗ ∈ F n that annihilates J , also annihilates f . Let t be a
new indeterminant variable and note that there is no element of Kn+1 that annihilates both
J and 1 − tf . Thus, by the weak form of Hilbert’s Nullstellensatz, the ideal generated by
J ∪ {1 − tf} in F [x⃗, t] must be equal to F [x⃗, t]. Hence, there are some f1, ..., fk ∈ J and
g1(t), ..., gk+1(t) ∈ F [x⃗, t] such that

g1(t)f1 + ... + gk(t)fk + gk+1(t)(1 − tf) = 1.

Assuming that f ≠ 0 (otherwise, we are done), plug in t = 1/f and get

g1(1/f)f1 + ... + gk(1/f)fk = 1.

Multiplying both sides with fm for large enough m ∈ N, we get

g̃1f1 + ... + g̃kfk = f
m,

where g̃1, ..., g̃k are some polynomials in F [x⃗], which shows that f ∈
√
J . �

References

[End01] H. B. Enderton, A Mathematical Introduction to Logic, 2nd ed., Academic Press, 2001.
[Mar02] D. Marker, Model Theory: An Introduction, Graduate Texts in Mathematics, Springer, 2002.
[Mos08] Y. N. Moschovakis, Informal notes full of errors, unpublished, 2008.
[vdD10] L. van den Dries, Mathematical Logic: Lecture Notes, unpublished, 2010.

Department of Mathematics, UCLA, Los Angeles CA 90095-1555, USA
E-mail address: anush@math.ucla.edu

	1. Introduction
	2. First order logic
	2.A. Structures
	2.B. Language and interpretation
	2.C. Definability
	2.D. Theories and models
	2.E. Elementarity
	2.F. Formal proofs

	3. Completeness of FOL and its consequences
	3.A. Syntactic-semantic duality, completeness and compactness
	3.B. Henkin's proof of Gödel's Completeness Theorem
	3.C. The Skolem ``paradox''
	3.D. Elementary diagrams and the upward Löwenheim-Skolem theorem
	3.E. Nonstandard models of arithmetic
	3.F. Applications to combinatorics

	4. Complete theories
	4.A. The Łos-Vaught test
	4.B. Algebraically closed fields and the Lefschetz Principle
	4.C. Reducts of arithmetic

	5. Incomplete theories
	5.A. Sketch of proof of the Incompleteness theorem
	5.B. A quick introduction to recursion theory
	5.C. Representability in Robinson's system Q
	5.D. Gödel coding
	5.E. The First Incompleteness Theorem (Rosser's form)
	5.F. The Second Incompleteness Theorem and Löb's theorem

	6. Undecidable theories
	6.A. 10 sets and Kleene's theorem
	6.B. Universal 10 relation and Church's theorem

	7. Decidable theories and quantifier elimination
	7.A. A criterion for quantifier elimination
	7.B. Quantifier elimination for ACF
	7.C. Model completeness and Hilbert's Nullstellensatz

	References

